

QUARTERLY ENVIRONMENTAL MONITORING REPORT (QEMR) DECEMBER 2020

DUNMORE RECYCLING & WASTE DEPOT 44 BUCKLEYS ROAD, DUNMORE, NSW, 2529

ENVIRONMENT PROTECTION LICENCE (EPL) 5984

Prepared For: Shellharbour City Council

Project Number: **ENRS0033**Date: **January 2021**

COMMERCIAL IN CONFIDENCE

This document has been prepared consistent with accepted scientific practice, supported by available data and resource conditions, as determined by limited data acquisition during the assessment period, evident at the site at the time. The designated recipients of this report accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using the results of the interpretation, the data, and any information or conclusions drawn from it, whether or not caused by any negligent act or omission. To the maximum permitted by law, ENRS Pty Ltd excludes all liability to any person or identity, arising directly or indirectly from using the information or material contained herein.

INTELLECTUAL PROPERTY LAWS PROTECT THIS DOCUMENT

Copyright in the material provided in this document is owned by *ENRS Pty Ltd,* and third parties may only use the information in the ways described in this legal notice:

- Temporary copies may be generated, necessary to review the data.
- A single copy may be copied for research or personal use.
- The documents may not be changed, nor any part removed including copyright notice.
- Request in writing is required for any variation to the above.
- An acknowledgement to the source of any data published from this document is mandatory.

ACKNOWLEDGEMENTS

The project was conducted through close liaison with Shellharbour City Council (SCC) and ALS Environmental.

Author and Document Control

Written/Submitted by:	Reviewed / Approved by:
(Boeslen	Lat
Taite Beeston (BSc.)	Rohan Last (BSc. MSc)
Geologist & Environmental Consultant	Hydrogeologist & Environmental Scientist

Record of Distribution

Copies	Report No. & Title	Status	Date	Prepared for:
1 x PDF	202012_ENRS0033r1e1_SCC Dunmore QEMR	Rev.1	18 th Jan. 2021	ALS c/- Shellharbour City Council (SCC)

EXECUTIVE SUMMARY

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Monitoring Report for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This report summarises the results of field testing and laboratory analysis conducted by ALS for the December 2020 quarterly monitoring period. This Quarterly Report provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour Council (SC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements are provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this Quarterly Environmental Monitoring Report are to:

- Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

The scope of work for this Quarterly Environmental Monitoring Report comprised the collation, assessment and reporting of Site data made available to ENRS from the quarterly December 2019 monitoring period in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);

- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- > Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the December 2020 quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- ➤ Groundwater reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-19r. This is consistent with previous monitoring events;
- Onsite surface water samples (SWP-1, SW-2 and SWP-4) reported two (2) minor exceedances for pH above the ANZECC (2000) trigger values for 95% marine/freshwater. The remaining chemical leachate indicators were reported below the assessment criteria. Sample point SWP-5 was dry, consistent with previous monitoring events;
- Downgradient Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were generally reported within the adopted Site Assessment Criteria. A single exceedance above the ANZECC (2000) guidelines for Nitrate was reported in SWC-Up;
- > Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. A single exceedance was recorded in the December 2020 monitoring period. Monitoring should continue in accordance with EPL 5984 requirements;
- ➤ No non-compliances with the EPL were reported during the December 2020 quarterly monitoring period;
- ➤ Based on this review of the quarterly December 2020 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- This report must be read in conjunction with the attached Statement of Limitations.

TABLE OF CONTENTS

EXECU.	TIVE SUMMARY	II
1.0	INTRODUCTION	1
1.1	Project Background	1
1.1.1	,	
1.1.2	EPL Requirements	1
1.2	Objectives	1
1.3	Scope of Work	2
2.0	SITE DESCRIPTION	2
2.1	Location	2
2.2	Surrounding Landuse	3
2.2.1	Sensitive Receptors	4
2.3	Topography & Drainage	4
2.4	Soil Landscape	4
2.5	Geology	4
2.6	Hydrogeology	4
2.6.1	Existing Bores	5
2.6.2	Flow Regime	5
2.7	Surface Water	5
3.0	ASSESSMENT CRITERIA	5
3.1	Contaminants of Potential Concern	5
3.2	Water Quality Guidelines	6
3.2.1	ANZECC Guidelines	6
3.2.2	National Environmental Protection Measure (NEPM)	6
3.3	Dust Deposition Assessment Criteria	7
3.4	Surface Methane GAS Assessment Criteria	7
4.0	SAMPLING METHODOLOGY	7
4.1	Water Sampling	8
4.1.1	Location of Water Monitoring Points	8
4.1.2	Depth to Water	8
4.1.3	Sample Collection	8
4.1.4	1 3	
4.1.5	G	
4.2	Dust Deposition sampling	
4.3	Surface Methane Gas Monitoring	
4.4	Laboratory Analysis	9
5.0	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	10

5.1	Data Quality Objectives	10
5.2	QA/QC Procedures	10
5.3	EPL Non-Compliance	11
6.0	WATER QUALITY RESULTS	11
6.1	Overflow Results	11
6.2	Field Testing	11
6.3	Physical Indicators	11
6.3.1	Salinity (EC & TDS)	11
6.3.2	79	
6.3.3	pH	12
6.3.4	Total Suspended Solids (TSS)	12
6.4	Inorganic Analytes	13
6.4.1	Nutrients	13
6.4.2	Metals & Metalloids	13
6.5	Organic Analytes	14
6.5.1	Total Organic Carbon	14
6.6	Summary of Water Quality Exceedances	15
7.0	DUST GAUGE RESULTS	15
8.0	SURFACE METHANE GAS RESULTS	16
9.0	ENVIRONMENTAL ASSESSMENT	16
9.1	Monitoring Point Summary	16
10.0	CONCLUSIONS	16
11.0	LIMITATIONS	18
12.0	REFERENCES	19

LIST OF TABLES, FIGURES & APPENDICES

TABLES

Table 1: Site Identification

Table 2: Surrounding Land use

Table 3: Groundwater Assessment Criteria

Table 4: Adopted Guideline Criteria

Table 5: Data Quality Objectives

Table 6: Summary of Quarterly Water Monitoring Exceedances

Table 7: Summary of Dust Gauge Results

Table 8: Water Quality Results

FIGURES

Figure 1: Site Location Map

Figure 2: Sampling Points & Site Plan

Figure 3: Surface Methane Gas Sample Transects

Figure 4: Regional Geology

Figure 5: Registered Bores

APPENDICES

Appendix A EPL 5984 Sampling Point Summary (NSW EPA, 04/03/2020)

Appendix B Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

Appendix C Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

Appendix D Surface Gas (Methane) Field Sheets

Appendix E Calibration Certificates

Appendix F Overflow Event Results

1.0 INTRODUCTION

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Monitoring Report for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This report summarises the results of field testing and laboratory analysis conducted by ALS for the December 2020 quarterly monitoring period. This Quarterly Report provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 PROJECT BACKGROUND

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour Council (SC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

1.1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements are provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.2 OBJECTIVES

The objectives of this Quarterly Environmental Monitoring Report are to:

- Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify any on-site or off-site impacts associated with operation of the Site;

- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

1.3 SCOPE OF WORK

The scope of work for this Quarterly Environmental Monitoring Report comprised the collation, assessment and reporting of Site data made available to ENRS from the quarterly December 2019 monitoring period in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- ➤ Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2.0 SITE DESCRIPTION

2.1 LOCATION

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 1** below. Details of the Site boundary and sampling points are provided in the Site Plan (see **Figure 2**). The key features required to identify the Site are summarised in **Table 1**.

Table 1: Site Identification

Aspect	Description	
Site	Dunmore Recycling and Waste Depot	
Street Address	44 Buckleys Road, Dunmore, NSW 2529	
Site Area	72.36 hectares	
Title Identifier	Lot 21 DP 653009, Lot 1 DP 419907	

Aspect	Description	
Zoning	RU1 Primary Production	
Local Government Area	ocal Government Area Shellharbour City Council	

Dunmore Recycling & Waste Depot

Figure 1: Site Location Map

Source: SIX Maps (https://maps.six.nsw.gov.au/) (cited 16/01/2020)

2.2 SURROUNDING LANDUSE

The current activities and operations on adjacent properties and the surrounding area include:

Table 2: Surrounding Land use

Direction	Land Use
North:	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East:	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South:	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West:	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- Recreational users of the Minnamurra River estuary environs;
- > Down gradient stakeholders; and
- ➤ Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 TOPOGRAPHY & DRAINAGE

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 SOIL LANDSCAPE

The previous annual monitoring report (Environmental Earth Sciences 2018) reported the soil profile at the Site as organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils (ASS).

2.5 GEOLOGY

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet. The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 HYDROGEOLOGY

Groundwater resources in the area are expected to be associated with *Shallow unconfined* alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater.

A review of the *NSW Office of Water* (*NOW*) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see **Figure 5**). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (*Boral Site*) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifer, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, is largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 SURFACE WATER

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3.0 ASSESSMENT CRITERIA

3.1 CONTAMINANTS OF POTENTIAL CONCERN

This section of the report provides a summary of the Contaminants of Potential Concern (CoPC) associated with the Site. CoPC's are identified in the Sites EPL/s which document the

CoPC and water quality indicators required to be monitored. Analytical requirements for all water sampling are provided in Appendix A.

3.2 WATER QUALITY GUIDELINES

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC 1995). For the purpose of this assessment, the relevant criteria selected to protect environmental values are summarised in **Table 3** below:

Environmental Value

Relevant Guideline

ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality).

National Environment Protection Measure (NEPM) (2013).

Australian Drinking Water Guidelines (ADWG) (2018)

Table 3: Groundwater Assessment Criteria

3.2.1 ANZECC Guidelines

Drinking Water

The relevant criteria for this water quality assessment are the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG;2018). The ANZG (2018) provide Default Guideline Values (DGVs) for four (4) levels of protection categorised by the percentage of species possibly affected, being 80%, 90%, 95% or 99% of species. Values for a level of protection for 95% of species in a marine environment have been adopted and are displayed in **Table 4**. Where DVGs are not available reference is made against the ANZECC (2000) Trigger Values (TVs). The *NSW Office of Water* (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the **95 per cent of species level of protection**.

Parameter Groundwater Guideline Surface water Guideline Ammonia 0.91 mg/L 1.88 mg/L 10.6 mg/L **Nitrate** 10.6 mg/L pН 6.5-8.0 pH units 6.5-8.0 pH units Soluble Iron 0.3 mg/L 0.3 mg/L Manganese 1.9 mg/L 1.9 mg/L **Electrical Conductivity** 125-2200 µS/cm

Table 4: Adopted Guideline Criteria

3.2.2 National Environmental Protection Measure (NEPM)

The NSW EPA has endorsed the use of the Groundwater Investigation Levels (GILs) given in the 2013 ASC NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and

Groundwater'. The latest NEPM provide a framework for risk-based assessment of groundwater contamination.

Groundwater Health Screening Levels (HSLs) are provided for four (4) land use categories for vapour intrusion (Table 1A[4]) associated with Total Recoverable Hydrocarbons TRH (F1 & F2) and BTEX compounds.

NEPM	Description of Land use Categories
HIL A	Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
HIL B	Residential B with minimal opportunities for soil access; includes buildings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL C	Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
HIL D	Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
GILs	Groundwater Investigation Levels (GILs) should be applied based on the receiving environment and groundwater resources. GILs are provided in NEPM Table 1C for; Fresh Waters; Marine Waters; and Drinking Water;
	Ecological Investigation Levels (EILs) for common contaminants in the top two (2) metres of soil based on three (3) generic land use settings:
EILs	Areas of ecological significance;
	 Urban residential areas and public open space; and
	Commercial and industrial land uses.

3.3 DUST DEPOSITION ASSESSMENT CRITERIA

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m²/month.

3.4 SURFACE METHANE GAS ASSESSMENT CRITERIA

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

4.0 SAMPLING METHODOLOGY

Field sampling was conducted by *ALS Environmental* (Wollongong) as commissioned by *SCC* in June 2020. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following sub-sections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL/s and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

4.1 WATER SAMPLING

4.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. In summary the sampling regime collected samples from; eight (8) surface waters; nine (9) groundwater monitoring wells; and two (2) leachate points. Sampling locations are illustrated in **Figure 2** attached.

4.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. **No LNAPL was identified in monitoring Wells**.

4.1.3 Sample Collection

Sampling is conducted independently by *ALS Environmental* under contract with *SCC*. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling is conducted in accordance with *ALS* sampling protocols.

4.1.4 Groundwater Sampling

Groundwater Wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated Wells are sampled before likely higher contaminated Wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Samples were collected using clear disposal bailers. and were sealed in laboratory-prepared sampling containers appropriate for the analysis. All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Surface water and leachate samples were collected using as 'grab samples' from the midpoint of the structure and at mid-depth.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;
- Sample containers contain zero headspace;

- Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

4.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- Temperature; and
- > pH (Acidity).

4.2 DUST DEPOSITION SAMPLING

Measurement of Dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month period between the **13**th **November** and **15**th **December 2020**. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

4.3 SURFACE METHANE GAS MONITORING

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix E

Calibration Certificates

Appendix F.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in **Figure 3**. Transects were recorded using a Magellan *SporTrak* GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste. The concentration of methane gas was also recorded in any buildings located within a distance of 250 m of the deposited waste, and any depressions or surface fissures away from the sampling grid were also investigated.

4.4 LABORATORY ANALYSIS

ALS, a NATA accredited laboratory, was contracted by *SC* to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

5.1 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented by Australian Standard: AS 4482.1-2005 and referenced by the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013). The DQO's for the investigation were to obtain representative data to allow assessment of:

- groundwater quality;
- ➤ The risks posed to human health and the environment, including potential future users of the Site; and
- The requirements for any further investigative works.

The assessment was conducted to a standard consistent with generally accepted and current professional consulting practice for such an investigation. The evaluation criteria adopted for the investigation are summarised in **Table 5**.

Table 5: Data Quality Objectives

DQO	Evaluation Criteria
Documentation	Completion of field records, chain of custody documentation,
completeness	laboratory test certificates from NATA-accredited laboratories.

DQO	Evaluation Criteria
Data comparability	Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	Adequate sampling coverage of all areas of environmental concern at the Site, and selection of representative samples.
Precision and accuracy for sampling and analysis	Use properly trained and qualified field personnel and achieve field and laboratory QA/ QC criteria.

5.2 QA/QC PROCEDURES

Data provided for the purpose of this report by SC was prepared by ALS. ALS is NATA accredited for the laboratory testing. The QA/QC indicators as provided to ENRS either all complied with the required standards, or showed variations that would have no significant effect on the quality of the data or the conclusions of this environmental assessment. Therefore, the data is considered acceptable for use in this assessment.

It should be noted that whilst the EPL does not require field duplicates, ENRS recommend sampling include rinsate samples and field duplicates at the standard rate of 1 in 10, or field QA/QC is conducted in accordance with *ALS* procedures.

5.3 EPL NON-COMPLIANCE

Monitoring requirements are defined by the EPL. ENRS understand the December 2020 quarterly monitoring results identified no non-compliance with the terms of the EPL.

6.0 WATER QUALITY RESULTS

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in **Table 8** with comparison against the relevant Site Assessment Criteria (SAC). Exceedances of relevant guidelines are also summarised in **Table 6**. The laboratory certificates of analysis are provided in Appendix B.

6.1 OVERFLOW RESULTS

One (1) overflow event was recorded over the 2020 reporting period on the *6th November* **2020**. Climate data taken from Albion Park (Shellharbour Airport) (068241) weather station recorded a total rainfall of 22mm over two (2) days leading up the event (5-6/11/2020). Overflow was subsequently sampled by *ALS* at two (2) locations SWP1 and SPW2 and analysed for total suspended solids and pH. Laboratory certificates of analysis are provided in Appendix F. Results for total suspended solids (TSS) were reported between <5 mg/L

(SWP2) and 11mg/L (SWP1). pH recorded relatively neutral results of 7.1 (SWP1) and 7.9 (SWP2).

6.2 FIELD TESTING

Field testing is conducted by ALS during sampling to record physical water parameters. A water quality meter is used to measure the following parameters in the field:

- Electrical Conductivity (Salinity);
- pH (Acidity); and
- Dissolved Oxygen

6.3 PHYSICAL INDICATORS

6.3.1 Salinity (EC & TDS)

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio for of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2.200 μ S/cm (~1,500 mg/L).

Groundwater

Salinity in groundwater is typically higher than surface water due to mineral dissolution. Groundwater salinity at the Site was generally reported above the freshwater SAC of 2,200 μ S/cm. Elevated results were reported in six (6) groundwater bores ranging between; 1,770 μ S/cm (BH-3) and 7,360 μ S/cm (BH-1). Results are consistent with the previous quarterly monitoring events.

Leachate

Leachate salinity for the quarterly June 2020 monitoring period was reported to be **13,100 µS/cm** (Sump) and **14,400 µS/cm** (LP1) which is above the TV.

6.3.2 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field during sampling. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulfide and Ammonia.

The ANZECC (2000) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm.

Dissolved Oxygen was recorded for Leachate only, at 1.0 mg/L (LP1) and 3.0 mg/L (Sump).

6.3.3 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Surface Water

Surface water reported pH values of between pH 7.5 (SWP-1) and pH 8.2 (SWP-2 & SWP-4).

Groundwater

Groundwater pH was reported between **pH 6.6** (BH-14) and **pH 7.3** (BH-3). All groundwater results were reported within the ANZECC recommended range of pH 6.5-8.0. The results are largely within the historical range of values.

6.3.4 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces.

TSS was reported for surface water only. Concentrations were reported between the laboratory lower limit of reporting of <5mg/L and 17 mg/L (SWP-2).

6.4 INORGANIC ANALYTES

6.4.1 Nutrients

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

Ammonia

Ammonia was measured within groundwater monitoring bores between **0.3 mg/L** (BH-14) and **338 mg/L** (BH-1c). Seven (7) out of the nine (9) groundwater wells reported exceedances over the adopted trigger value of 0.91 mg/L. This is consistent with historical values.

Ammonia in leachate was reported at **1,240 mg/L** (Sump) and **1,260 mg/L** (LP1). High ammonia concentrations are expected in untreated leachate.

Ammonium

Ammonium was measured at Rocklow Creek surface water monitoring locations between <0.01 mg/L (SWC-up) and 0.1 mg/L (SWC-down). The results were reported below the adopted guidelines of 0.91mg/L.

Nitrate

Results for Nitrate in groundwater were reported between <.01 mg/L in multiple bores and 14.9 mg/L (BH-13). A total of three (3) exceedances in groundwater were reported above the TV of 0.7mg/L including; 14.9 mg/L (BH-13), 11.1 mg/L (BH-3) and 3.76 mg/L (BH-14).

Nitrate in Rocklow Creek surface water samples reported a single elevated exceedance of 2.58 mg/L (SWC-UP). The remainder of the Rocklow Creek samples were all reported below the TV of **0.7mg/L**. The results are considered satisfactory.

Nitrate in leachate was reported below the laboratory lower limit of detection of <0.2mg/L.

6.4.2 Metals & Metalloids

Magnesium (Total Mg)

Magnesium was analysed in selected surface water samples. Concentrations of magnesium in surface water were reported between **34 mg/L** (SWP-1) and **1,220 mg/L** (SWC-down 2).

Manganese (Total Mn)

Manganese was analysed in groundwater and leachate sampling points. Concentrations of Manganese in groundwater were reported between **0.093 mg/L** (BH-1c) and **0.628 mg/L** (BH-9). Leachate concentrations were reported at **0.422 mg/L** (LP1) and **5.68 mg/L** (Sump). The leachate Sump reported the only exceedance above the adopted TV of 1.9 mg/L.

Iron (Total Fe)

Total iron was measured in selected surface water samples. Concentrations of total iron within onsite surface water were reported at **0.24 mg/L** (SWP-1). Concentrations of total iron within Rocklow creek sample locations were all reported between the laboratory lower limit of detection of <0.5 mg/L. Concentration of iron with leachate samples was reported between **5.06 mg/L** (LP1) and **199 mg/L** (Sump).

Iron (Dissolved Fe)

Dissolved iron was measured within selected groundwater and surface water sampling points. Groundwater results were reported between the laboratory lower limit of detection of <0.05 mg/L (BH-14) and 10.0 mg/L (BH15). Surface water reported concentrations of dissolved iron generally below the laboratory lower limit of detection. A single minor detection of 0.12 mg/L (SWP-1) was reported.

6.5 ORGANIC ANALYTES

6.5.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater, however high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological

activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

TOC was reported during monitoring period at the following concentrations:

- Groundwater; between 15 mg/L (BH-13 & BH-12r) and 176 mg/L (BH-1c); and
- Leachate; 673 mg/L (Sump) and 712 mg/L (LP1).

6.6 SUMMARY OF WATER QUALITY EXCEEDANCES

The following table provides a summary of exceedances above the ANZECC (2000) guidelines for the protection of 95% of fresh water and marine species for the collected water samples.

Table 6: Summary of Quarterly Water Monitoring Exceedances

	-	-	_
Sample	Exceedances		Comments
ID	Results	Guideline	Somments
BH-1c	Ammonia 338 mg/L EC 7,360 µS/cm	0.91 mg/L 125-2200 μS/cm	
BH-3	Ammonia 37.4 mg/L Nitrate 11.1 mg/L	0.91 mg/L 0.7 mg/L	
BH-4	Ammonia 10.3 mg/L EC 2,250 μS/cm	0.91 mg/L 125-2200 μS/cm	Exceedances of Ammonia, Nitrate and
BH-9	Ammonia 77.9 mg/L EC 4,090 μS/cm	0.91 mg/L 125-2200 μS/cm	Salinity (EC) were encountered in multiple wells at the Site.
BH-12r	Ammonia 5.8 mg/L EC 2,560 µS/cm	0.91 mg/L 125-2200 μS/cm	Concentrations are elevated and within range of historical data sets.
BH-13	Nitrate 14.9 mg/L	0.7 mg/L	S
BH-14	Nitrate 3.44 mg/L	0.7 mg/L	
BH-15	Ammonia 31.3 mg/L EC 5,330 μS/cm	0.91 mg/L 125-2200 μS/cm	
BH-19r	Ammonia 5.7 mg/L	0.91 mg/L	
SWP-1	No exceed	ances	
SWP-2	pH 8.2	6.5-8.0 pH units	
SWP-4	pH 8.4	6.5-8.0 pH units	Minor exceedances for pH.
SWP-5	Dry		
SWC-up	Nitrate 2.58 mg/L	0.7 mg/L	
SWC-2	No exceed	ances	A single exceedance for Nitrate in SWC-UP Rocklow Creek sample.
SWC-down	No exceed	ances	
SWC-down 2			
Leachate Sump	Manganese 5.68 mg/L Ammonia 1,240 mg/L EC 13,100 μS/cm pH 8.8	1.9 mg/L 0.91 mg/L 125-2,200 µS/cm 6.5-8.0 pH units	Elevated levels of Ammonia, EC and pH considered to be characteristic of
Leachate Tank LP1	Ammonia 1,260 mg/L EC 14,400 µS/cm pH 8.1	0.91 mg/L 125-2,200 µS/cm 6.5-8.0 pH units	untreated leachate.

7.0 DUST GAUGE RESULTS

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month between 13th November and 15th December 2020, in general accordance with AS3580.10.1. Dust gauge locations are provided in **Figure 2** attached.

Satisfactory

DDG4

Sample ID	Guideline Criteria (g/m²/month)	Total Insolvable Matter (g/m²/month)	Comments
DDG1		0.8	Satisfactory
DDG2	4	0.7	Satisfactory
DDG3	4	2.6	Satisfactory

Table 7: Summary of Dust Gauge Results

Results for depositional dust during the December 2020 quarterly monitoring period reported levels of dust generally below the adopted assessment criteria of 4 g/m²/month. A single exceedance was reported of **5.5 g/m²/month** (DDG4). Review of the laboratory certificates of analysis (COA) reported elevated amounts of ash and combustible matter. Laboratory COA are provided in Appendix C.

5.5

8.0 SURFACE METHANE GAS RESULTS

The surface gas monitoring from the June 2020 quarterly monitoring period reported levels of methane between 2.1 ppm and 30.3 ppm which is below the EPA license limits of 500 ppm. The results are considered satisfactory. A table of results is provided in Appendix D.

9.0 ENVIRONMENTAL ASSESSMENT

9.1 MONITORING POINT SUMMARY

Field measurements and laboratory water quality results from the quarterly December 2020 quarterly monitoring period reported concentrations analytes generally within the range historical values. Groundwater and surface water within the Site boundary reported elevated levels of analytes considered to be characteristic of landfill and leachate. Offsite sample locations within Rocklow Creek generally reported satisfactory results. A single exceedance for Nitrate was recorded in Rocklow Creek upstream sample SWC-UP.

Dust gauges were generally reported below the site assessment criteria. A single exceedance was reported within sampling location DDG4.

Results of surface methane gas monitoring recorded satisfactory results.

10.0 CONCLUSIONS

Based on the findings obtained during the December 2020 quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- ➤ Groundwater reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-19r. This is consistent with previous monitoring events;
- Onsite surface water samples (SWP-1, SW-2 and SWP-4) reported two (2) minor exceedances for pH above the ANZECC (2000) trigger values for 95% marine/freshwater. The remaining chemical leachate indicators were reported below the assessment criteria. Sample point SWP-5 was dry, consistent with previous monitoring events;
- Downgradient Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were generally reported within the adopted Site Assessment Criteria. A single exceedance above the ANZECC (2000) guidelines for Nitrate was reported in SWC-Up;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. A single exceedance was recorded in the December 2020 monitoring period. Monitoring should continue in accordance with EPL 5984 requirements;
- ➤ No non-compliances with the EPL were reported during the December 2020 quarterly monitoring period;
- Based on this review of the quarterly December 2020 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

11.0 LIMITATIONS

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

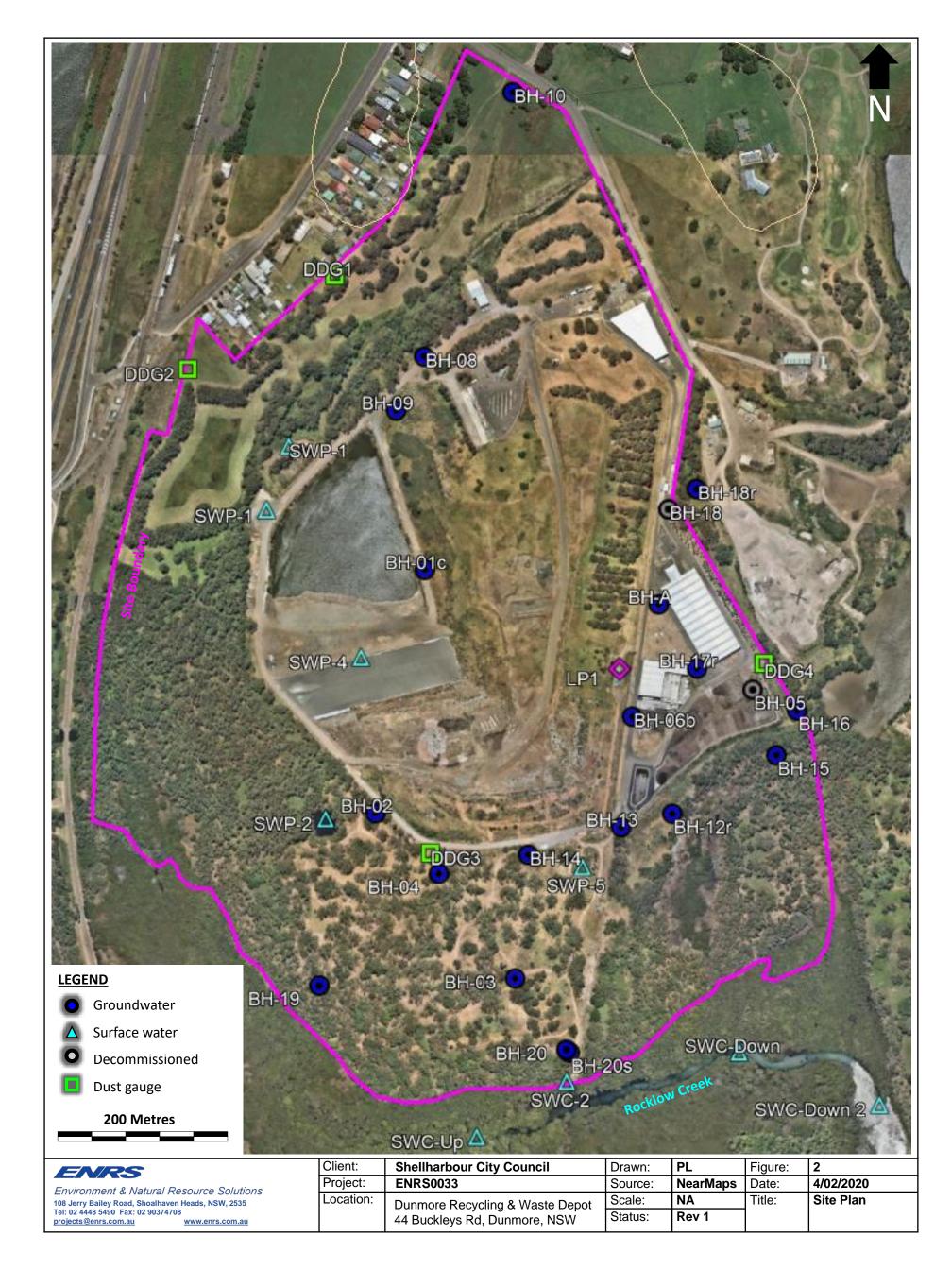
ENRS derived the data in this report primarily from visual inspections, examination of available records, interviews with individuals with information about the site, and if requested, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.

The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of the site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

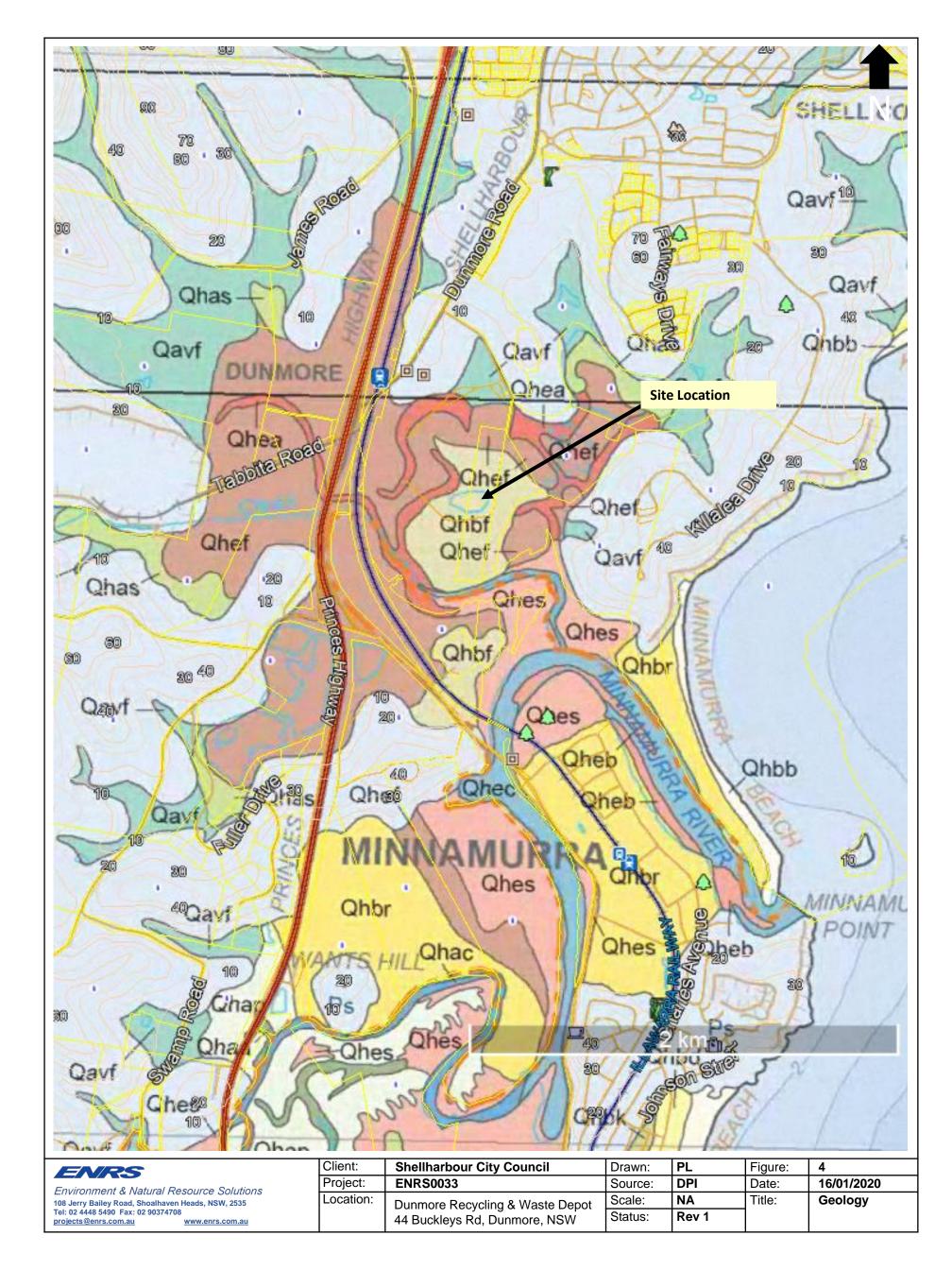
This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

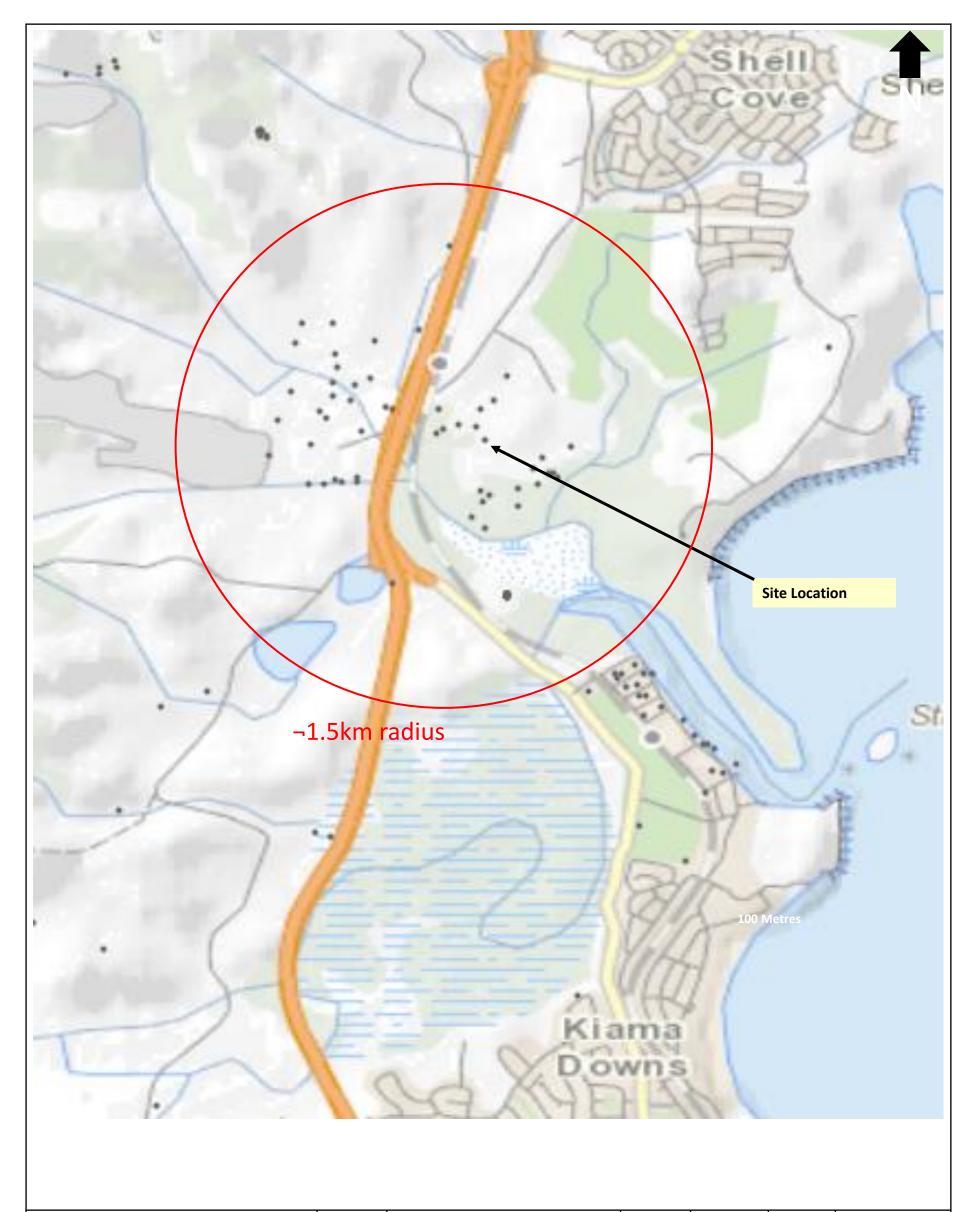
It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.



12.0 REFERENCES

- ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.
- ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council, ISBN 09578245 0 5 (set).
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.
- Australian Government (2011) National Health & Medical Research Council. National Resource Management Ministerial Council. National Water Quality Strategy. Australian Drinking Water Guidelines.
- Australian Standard AS 3580.10.1. Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter Deposited matter Gravimetric method
- Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales
- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure.
- Netherlands (1994) Environmental Quality Objectives in the Netherlands. Ministry of Housing, Spatial Planning and the Environment, Netherlands Government. ISBN 90-6092-783-4.
- NSW Department of Environment and Climate Change (2009a). Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination.
- NSW EPA (1996) Environmental Guidelines: Solid Waste Landfills. ISBN 0 7310 3774 X
- NSW EPA (2016) Environmental Guidelines: Solid Waste Landfills (2nd Edition). ISBN 978 1 76039 350 2
- NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984
- NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903
- NSW Government (1997). Protection of the Environment Operations Act.
- NSW Government (2005). Protection of the Environment (Waste) Regulation.
- NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B Waste Landfills.


FIGURES



Environment & Natural Resource Solutions
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535
Tel: 02 4448 5490 Fax: 02 90374708
projects@enrs.com.au www.enrs.com.au

Client:	Shellharbour City Council	Drawn:	PL	Figure:	3		
Project:	ENRS0033	Source:	SixMaps	Date:	16/03/2020		
Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Surface Gas		
	44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1		Sample transects		

Environment & Natural Res	source Solutions
108 Jerry Bailey Road, Shoalhaven H	leads, NSW, 2535
Tel: 02 4448 5490 Fax: 02 90374708	
projects@enrs.com.au	www.enrs.com.au

Client:	Shellharbour City Council	Drawn:	PL	Figure:	5
Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Registered
	44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1		Bores

TABLES

	TABLE 8: Total Concentration Results Quarterly Water Monitoring Results - December 2020: Dunmore Recycling and Waste Depot																																		
	rigger Values for Fresh of Species) ^A	water (Protection		-	-	-	-	1.9	-	-	-	0.9 (pH 8)	0.9 (pH 8)	-	0.7	0.7	-	-	-	-	-	-	-				-	-	-	-	6.5 - 8.0	2200	-		
	rigger Values for Marine tion of 95% of Species)			-	-	-	-	-	-		-	0.91 (pH 8)	0.91 (pH 8)	•	-	•	-	-	-	-	-	•	-		•	-	•	-	-	-	-	-	-		
	lian Drinking Water	Health	-	-	-	-	-	0.5	-	-	1.5	-	-	3	50	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.5 - 8.0	-	-		
uideli	ines (2018) ^c	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	0.5	-	-	-	-	-	-	-	-	-	250		-	-	5	-	-	-	6.5 - 8.0	-	-		
	Sample No.	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potas sium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Ammonium as N	Nitrite as N	Nitrate as N	Nitrite + Nitrate as N	Total Organic Carbon	Biochemical Oxygen Demand	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Total Anions	Total Cations	Ionic Balance	Нф	Electrivcal Conductivity	Temperature	Depth to Water (mbgl TOC)	Comments
		Units Laboratory PQL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L	mg/L 2	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	meq/L 0.01	meq/L 0.01	meq/L 0.01	pH 0.01	μS/cm 1	°C 0.1	mbgl -	<u> </u>
	BH-1c	16/12/2020	861	130	-	-	212	0.001	- 0.05	7.96	0.1	338.0	-	0.01	<0.10	<0.10	176	-	<1	<1	2460	2460	<10	-	- 0.1	-	-	-	- 0.01	- 0.01	7	7360	25.9	3.39	
}	BH-3	16/12/2020	255	138	-	-	30	0.193	.	1.85	0.2	37.4	-	0.06	11.10	11.20	17	-	<1	<1	399	399	82	-	-	-	-	-	-	-	7.3	1770	20.3	3.15	-
	BH-4	16/12/2020	280	218	-	-	20	0.228	-	6.25	0.1	10.3	-	<0.01	<0.01	<0.01	20	-	<1	<1	706	706	170	-	-	-	-	-	-	-	7	2250	21.2	4.41	-
/ater	BH-9	16/12/2020	434	208	-	-	59	0.628	-	6.12	0.4	77.9	-	<0.01	<0.01	<0.01	78	-	<1	<1	1580	1580	88	-	-	-	-	-	-	-	6.8	4090	20.4	3.48	-
wpuno	BH-12r	16/12/2020	325	246	-	-	59	0.516	-	4.75	0.2	5.8	-	0.04	0.28	0.32	29	-	<1	<1	729	729	318	-	-	-	-	-	-	-	6.7	2560	22.5	4.43	-
Grou	BH-13	16/12/2020	113	206	-	-	31	0.106	-	0.06	0.3	0.3	-	0.04	14.90	14.90	15	-	<1	<1	697	697	208	-	-	-	-	-	-	-	6.8	1790	22.3	4.32	-
۳	BH-14	16/12/2020	215	106	-	-	32	0.150	-	<0.05	0.6	0.3		0.06	3.44	3.50	31	-	<1	<1	468	468	165		,	-	,	-	-	-	6.6	1680	22.5	4.88	-
Ī	BH-15	16/12/2020	1360	88	-	-	298	0.280	-	10.00	0.3	31.3	-	<0.10	<0.10	<0.10	73	-	<1	<1	373	373	435	-	ı	-	-				6.8	5330	21.3	0.79	-
	BH-19r	16/12/2020	266	152	-	-	23	0.154	-	1.50	0.1	5.7		0.13	0.12	0.25	21	-	<1	<1	553	553	218	-	•	-	•	-	-	-	7.2	1960	20.5	4.56	-
. 1	SWP-1	15/12/2020	251	56	34	193	15	-	0.24	0.12	-	-		-	-	-	-	-	<1	11	334	345	77		-	14	4	16	14	4	7.5	-	-	-	-
Water	SWP-2	15/12/2020	380	125	60	350	27	-	-	<0.05	0.1	-	-	-	-	-	-	-	<1	30	506	536	275	-	-	15	3	27	27	0	8.2		-	-	-
, š	SWP-4	15/12/2020	379	60	58	338	16	-	-	<0.05	<0.05	-	-	-	-	-	26	<2	<1	38	380	419	273	-	-	10	1.2	25	23	4	8.2	-	-	-	-
	SWP-5	15/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Dry
	SWC-up	15/12/2020	18600	428	1200	10200	367	-	<0.50	<0.50	-	•	<0.01	<0.01	2.58	2.58	-	-	<1	<1	131	131	2660			5	1	583	573	1	7.7	-	-	-	-
e k	SWC-2	15/12/2020	-	-	-	-	-	-	<0.50	<0.50	-	-	0.04	<0.01	0.06	0.06	-	-	<1	<1	133	133	٠		-	<5	-	-	-	-	7.8	-	-	-	-
δ	SWC-down	15/12/2020	19100	430	1200	10200		-	<0.50	<0.50	-		0.10	<0.01	<0.01	<0.01	-	-	<1	<1	132	132	2690	-		<5	1	597	573	2	7.8	-	-	-	-
	SWC-down 2	15/12/2020	18800	430	1220	10400		-	<0.50	<0.50	-	•	0.03	<0.01	<0.01	<0.01	-	-	<1	<1	130	130	2680	-	-	17	1	589	584	0	7.8	-	-	-	-
chate	Leachate Sump	15/12/2020	1550	93	-	-	394	5.680	199	-	0.5	1240	-	<0.10	<0.10	<0.10	712	-	<1	1060	3650	4710	29	3	33			-	-	-	8.8	13100	24.2	-	-
8	Leachate Tank LP1	15/12/2020	1530	20	-	-	48	0.422	5.06	II .	0.5	1260	-	< 0.10	< 0.10	< 0.10	673	-	<1	<1	4980	4980	<20	1	15	1	-	-	-	1	8.1	14400	24.4	-	_

hivestigation levels apply to typical slightly-moderately disturbed systems. Trigger Levels for 95% of species. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the sames as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the same as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the same as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the same as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions. Also the same as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on applying the same as the NEPM (2013) Ells. 8 ANZECC & ARMCANZ (2000) for guidance on ap

ENRS0033_DM_Water Table of Results_Q1 2021 Page 1 of 1

APPENDICES

Appendix A

EPL 5984 Sampling Point Summary (NSW EPA, 04/03/2020)

LF 1	_ 3304 Sampling F	Onit Summary	(NOW LFA, 04/03/2020)
1		Overflow drain	Catch drain collecting overflows from Sediment Dams 1 & 2 and labelled SWP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
2	Leachate monitoring		Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring		BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring		BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring		BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring		BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring		BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring		BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring		BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring		BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

18	Groundwater monitoring	BH9 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
20	Surface Water Monitoring	SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

Appendix B

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

CHAIN OF CUSTODY

ALS Laboratory: please tick ->

□ Sydney 277 Woodpark Rd, Smithfield NSW 2176
Ph 02 8784 8555 Eisemples sydney@alsenviro.com
Ph:07 3243 7222 Eisemples shakare@falsenviro.com

☐ Newcastle: 5 Rosedum Rd. Warabrook NSW 2304 ☐ Townsville: 14-15 Deanta Ct. Boble QLD 4518 Ph 02 4968 9433 E.samples newcastle@alsenvro.com Ph 07 4796 0600 E. townsylle.anyromental@alsenvro.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171
Ph/03 8549 9600 E. samples melbourner/haisenviro com-C Adelaide; 2-1 Burma Rd. Popraka SA 5096 Ph: 08 8359 0890 E:adelaide@aiserviro.com

☐ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7855 E: samples.perth@alsenviro.com C Launceston: 27 Wellington St, Launceston TAS 7250

		,					6.7 6060 409	o www.minion	garaci-wio con		111 120 0001 21	ao E. las isesionigaisen	ALO COM	
CLIENT:	Shellharbour City Council			OUND REQUIREMENTS:	☐ Standard TAT (Li	st due date):	:				FOR L	ABORATORY USE	ONLY (Circle)	
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard T. e.g., Ultra T	AT may be longer for some tests race Organics)	☐ Non Standard or	urgent TAT (I	List due date)	;			Custo	REPRESENTATION OF THE PROPERTY	Sept. Automato contrata - sept.	
PROJECT:	Dunmore Quarterly Ground Waters	's	ALS QUO	TE NO.: WO/0:	30/19 TENDER			COC SEQ	JENCE NUME	BER (Circle)	Free I receip	Environr	mental Division	. IVA
ORDER NUMBER:							coc:	⊢	3 4	5 6	7 Rando	Wollong	ong	NA NA
PROJECT MANAGER:	Joel Culton				<u> </u>		OF:	1 2	3 4	5 6	7 Other	Work C	72005662	2. 4 6
SAMPLER: COC emailed to ALS?	(VEC / NO)	SAMPLER I			RELINQUISHED BY:		RECI	EIVED BY:	ì		RELINQUIS		2000002	
Email Reports to :	(TES / NO)	EDD FORM	AI (OF GETAL	iity: -	DATECTUC:		A	ve.	-71				11 # 611 A. Mill	i
Email Invoice to:					(2010-0 DATE/TIME: 16.12.7	وسيحا	DATE /	111ME: 15. 1	120		DATE/TIME			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:			16112.0	<u> </u>	39.0	<u> </u>	7 -	-				
	I THE ENGINE OF THE PARTY OF TH	ac. OO Teports to	·			1								
ALS USE ONLY		E DETAILS olid(S) Water(W)	-	CONTAINER INF	ORMATION	ANALY	SIS REQUIR	ED Includi	ng SUITES ((NB. Suite Co	les must be listo		i, ⁵⁸ }itt, i, Priti, i, ≱ Meditiii	1
South and Self-		1				Whe	re Metals are requ	ired, specify T	otal (unfiltered b	attle required) or	Dissolved (field fil	indition	99 49963124.	
LAB iD	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	100	Dissolved Fe & Mn	NT-4 (NO2, NO3)			or samples requiring specific QC	els, dilutions, analysis etc.
	ВНА	16.12.00 8:4	e w			1	√	√	1	✓ ×			Field Tests - pH, EC, Te	emp & SWL
	вн2	1 13:19				1	1	1	1	1			Field Tests - pH, EC, Te	emp & SWL
	BH10	9:.2	w			1	1	4	1	1			Field Tests - pH, EC, Te	emp & SWL
	BH16	9:5	\$ W			✓	✓	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH17R	8:1:	5 w			*	1	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH18	8:5	5 w			1	1	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH18R	9:50		VA		1	1	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH20	12:40				*	'	1	*	1			Field Tests - pH, EC, Te	mp & SWL
	BH20s	12:30	W			*	1	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH21	11:15	W			*	1	✓	1	1			Field Tests - pH, EC, Te	mp & SWL
	BH22	111,00	W			*	*	✓	*	1		·	Field Tests - pH, EC, Te	mp & SWL
				· · · · · · · · · · · · · · · · · · ·										
						-							-	
							+		-	-				
· · ·	 					1								
	N 521 - 101					<u> </u>								
					TOTAL 10									
tors y steat the wife of the contract of the contract of			arrander at Circula s		(C) - 中央 () (C) () (C)	1	1		I	1	I .	I	1	

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; E = EDTA Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solls; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order : **EW2005663** Page : 1 of 6

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Groundwaters EPL Date Samples Received : 16-Dec-2020 16:00

Order number : 130985 Date Analysis Commenced : 16-Dec-2020

C-O-C number : ---- Issue Date : 29-Dec-2020 10:19

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER GROUNDWATERS

No. of samples received : 9
No. of samples analysed : 9

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW

Page : 2 of 6 Work Order : EW2005663

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK059G: LOR raised for NOx on sample 1 due to sample matrix.
- EK057G: LOR raised for Nitrite on sample 8 due to sample matrix.
- ED041G: LOR raised for Sulfate on sample 1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6
Work Order : EW2005663

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ВН1С	ВН3	BH4	ВН9	BH12R
		Sampli	ing date / time	16-Dec-2020 10:35	16-Dec-2020 13:15	16-Dec-2020 13:30	16-Dec-2020 10:15	16-Dec-2020 12:50
Compound	CAS Number	LOR	Unit	EW2005663-001	EW2005663-002	EW2005663-003	EW2005663-004	EW2005663-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.3	7.0	6.8	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	7360	1770	2250	4090	2560
EA116: Temperature								
Temperature		0.1	°C	25.9	20.3	21.2	20.4	22.5
		0.1	<u> </u>	20.3	20.3	21.2	20.4	22.3
ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2460	399	706	1580	729
Total Alkalinity as CaCO3	71-52-3	1	mg/L	2460	399	706	1580	729
-		,	9/ -	270V	555	700	1000	129
ED041G: Sulfate (Turbidimetric) as S0 Sulfate as S04 - Turbidimetric	14808-79-8	1	mg/L	<10	82	170	88	318
		'	mg/L	410	02	170	00	310
ED045G: Chloride by Discrete Analys Chloride		1	ma/l	861	255	280	434	325
	16887-00-6	ı	mg/L	001	255	200	434	325
ED093F: Dissolved Major Cations	= =	4		400	400	040	000	040
Calcium Potassium	7440-70-2	1	mg/L	130 212	138 30	218	208 59	246 59
	7440-09-7	1	mg/L	212	30	20	59	59
EG020F: Dissolved Metals by ICP-MS		0.004	a		2 422			2 - 12
Manganese	7439-96-5	0.001	mg/L	0.093	0.193	0.228	0.628	0.516
Iron	7439-89-6	0.05	mg/L	7.96	1.85	6.25	6.12	4.75
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete A								
Ammonia as N	7664-41-7	0.01	mg/L	338	37.4	10.3	77.9	5.79
EK057G: Nitrite as N by Discrete Ana	_							
Nitrite as N	14797-65-0	0.01	mg/L	0.03	0.06	<0.01	<0.01	0.04
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	11.1	<0.01	<0.01	0.28
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.10	11.2	<0.01	<0.01	0.32
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	176	17	20	78	29

Page : 4 of 6
Work Order : EW2005663

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ВН1С	внз	BH4	ВН9	BH12R
		Samplir	ng date / time	16-Dec-2020 10:35	16-Dec-2020 13:15	16-Dec-2020 13:30	16-Dec-2020 10:15	16-Dec-2020 12:50
Compound	CAS Number	LOR	Unit	EW2005663-001	EW2005663-002	EW2005663-003	EW2005663-004	EW2005663-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	3.39	3.15	4.41	3.48	4.43

Page : 5 of 6
Work Order : EW2005663

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	
		Sampli	ing date / time	16-Dec-2020 12:05	16-Dec-2020 13:05	16-Dec-2020 11:40	16-Dec-2020 12:50	
Compound	CAS Number	LOR	Unit	EW2005663-006	EW2005663-007	EW2005663-008	EW2005663-009	
				Result	Result	Result	Result	
EA005FD: Field pH								
pH		0.1	pH Unit	6.8	6.6	6.8	7.2	
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	1790	1680	5330	1960	
EA116: Temperature								
Temperature		0.1	°C	22.3	22.5	21.3	20.5	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	697	468	373	553	
Total Alkalinity as CaCO3		1	mg/L	697	468	373	553	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	208	165	435	218	
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	113	215	1360	266	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	206	106	88	152	
Potassium	7440-09-7	1	mg/L	31	32	298	23	
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.106	0.150	0.280	0.154	
Iron	7439-89-6	0.05	mg/L	0.06	<0.05	10.0	1.50	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	0.6	0.3	0.1	
EK055G: Ammonia as N by Discrete An	alvser							
Ammonia as N	7664-41-7	0.01	mg/L	0.28	0.26	31.3	5.67	
EK057G: Nitrite as N by Discrete Analy	ser							
Nitrite as N	14797-65-0	0.01	mg/L	0.04	0.06	<0.10	0.13	
EK058G: Nitrate as N by Discrete Analy								
Nitrate as N	14797-55-8	0.01	mg/L	14.9	3.44	<0.10	0.12	
EK059G: Nitrite plus Nitrate as N (NOx)		lvser _						
Nitrite + Nitrate as N	by Discrete Ana	0.01	mg/L	14.9	3.50	<0.10	0.25	
EP005: Total Organic Carbon (TOC)			J -					I .
Total Organic Carbon (10C)		1	mg/L	15	31	73	21	
Total Organic Garbon		•	1119/1	10	VI.	10	41	

Page : 6 of 6
Work Order : EW2005663

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	
		Samplii	ng date / time	16-Dec-2020 12:05	16-Dec-2020 13:05	16-Dec-2020 11:40	16-Dec-2020 12:50	
Compound	CAS Number	LOR	Unit	EW2005663-006	EW2005663-007	EW2005663-008	EW2005663-009	
				Result	Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.32	4.88	0.79	4.56	

CHAIN OF CUSTODY

ALS Laboratory: please tick >

Sydney: 277 Woodpark Rd. Smithfield NSW 2176
 Ph: 02 8784 8555 E.samples.sydney@alsenviro.com

☐ Brisbane: 32 Shand St, Stafford QLD 4053 Ph:07 3243 7222 E:samples.brisbane@alsenvira.com □ Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ph:02 4968 9433 E samples newcastle@alsenviro.com ☐ Townsville: 14-15 Desma Ct, Bohle QLD 4818 Ph:07 4796 0600 E; townsville environmental@alsenviro.com

C: Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph.03 8549 9600 E: samples.melbourne@alsenviro.com

Cl. Adelaide: 2-1 Burma Rd, Popraka SA 5095 Ph: 98 8359 9890 E:adelaide@alsenviro.com

© Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples perth@alsenviro.com CJ Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 93 6331 2158 E: launceston@alsenvire.com

CLIENT:	Shellharbour City Council		TURNAROL	JND REQUIREMENTS :	☐ Standard TA	T (List d	ue date):							FOR	LABORATO	JRY USE O	NLY (Circle)	
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TAT e.g., Ultra Trac	may be longer for some tests e Organics)	☐ Non Standar	d or urge	nt TAT (Li	st due date	ı):					\$191878900	dy Sea, intact?		Yes No. 1	N/A
PROJECT:	Dunmore Quarterly Surface Waters	· · · · · · · · · · · · · · · · · · ·		E NO.: WO/030/19 TEND	DER				coc s	EQUEN	ICE NUME	BER (C	ircle)	Free i	ce / frozen ce 17	bricks preser	ntupon Yes No	N/Ā
ORDER NUMBER:	. *						*	coc:	: ¥	2	3 4	5	6	7 Rando	om Sample Te	mperature on	Receipt: G	
PROJECT MANAGER:	Joel Culton							OF:	1	2	3 4	5	6	7 Other	comment	Military		a de la composição de l
SAMPLER:	obert Dah	SAMPLER M	MOBILE:		RELINQUISHED			REC	EIVED E	3Y:				RELINQUI	SHED BY:		RECEIVED BY:	
COC emailed to ALS? (YES / NO)	EDD FORM	AT (or default):	Robon													
Email Reports to :					DATE/TIME:			ı	E/TIME:					DATE/TIME	≣:		DATE/TIME:	
Email Invoice to :					15.12.	2>-	19	40										
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to	:															
ALSUSEONLY		E DETAILS lid(S) Water(W)		CONTAINER INF	FORMATION					_					sted to attract s		Additional Information	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belo		TAL TLES	TSS	NT-1, NT-2 (Ionic Balance)	TOC & BOD		Dissolved and Total Fe	Turbidity	i di biding	NH4 & NO3	Alkalinity		Comments on likely contaminant levels dilutions, or samples requiring specific analysis etc.	
	SWP2	15.20 11:15	w				✓	✓			✓	-	1				Field Tests - pH	
	SWP4 - Sand Mine Dam	11.22					✓	1	1		✓	-	/				Field Tests - pH	
	SWP5	10:4					1	4	✓		✓	. •	′				Field Tests - pH	
									+			-						
	,											_	_			<u> </u>		
																1		
												7	r	den na mar	ental Di	ulelon	·	
	•								-	_		4	1	Work Ord	i g Ier Refere	ange		
														EW	2005	657		
												1						
			4.000.644-0			10	ad Planta	10 - 1 - 1			ad. 477. A	<u> </u>						
V = VOA Vial HCI Preserved	P = Unpreserved Plastic; N = Nitric Preserved; VB = VOA VIal Sodium Bisulphate Presen Bottle; E = EDTA Preserved Bottles; ST = Si	ved; VS = VOA Vial Sulfuric Prese	rved; AV = Airfre	eight Unpreserved Vial SG = Sul													de Preserved Glass;	

CERTIFICATE OF ANALYSIS

Work Order : **EW2005657** Page : 1 of 3

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Surface Water Date Samples Received : 15-Dec-2020 16:00

Order number : 130985 Date Analysis Commenced : 15-Dec-2020

C-O-C number : ---- Issue Date : 22-Dec-2020 15:27

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

No. of samples received : 3
No. of samples analysed : 3

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 3
Work Order : EW2005657

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordace with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 3
Work Order : EW2005657

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Analytical Nesults			0 4 10				
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP2	SWP4 -	SWP5	
(Wattix, WATER)					Sand Mine Dam		
			ng date / time	15-Dec-2020 11:10	15-Dec-2020 11:20	15-Dec-2020 10:45	
Compound	CAS Number	LOR	Unit	EW2005657-001	EW2005657-002	EW2005657-003	
				Result	Result	Result	
EA005FD: Field pH		0.4	all liait				
рН		0.1	pH Unit	8.2	8.2		
EA025: Total Suspended Solids dried at						1	
Suspended Solids (SS)		5	mg/L	15	10		
EA045: Turbidity							
Turbidity		0.1	NTU	3.0	1.2		
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	30	38		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	506	380		
Total Alkalinity as CaCO3		1	mg/L	536	419		
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	275	273		
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	380	379		
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	125	60		
Magnesium	7439-95-4	1	mg/L	60	58		
Sodium	7440-23-5	1	mg/L	350	338		
Potassium	7440-09-7	1	mg/L	27	16		
EG020F: Dissolved Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05		
EG020T: Total Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	0.05	<0.05		
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	27.2	24.7		
ø Total Cations		0.01	meq/L	27.1	22.9		
Ø Ionic Balance		0.01	%	0.12	3.92		
EN67 PK: Field Tests							
Field Observations		0.01				DRY	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L		26		
			9, =				<u> </u>
EP030: Biochemical Oxygen Demand (E Biochemical Oxygen Demand		2	mg/L		<2		
Biochemical Oxygen Demand			IIIg/L		~2		

CHAIN OF CUSTODY

ALS Laboratory: please tick →

© **Sydney**: 277 Woodpark Rd. Smithfield NSW 2176 Ph: 02 8784 8555 E.samples.sydney@alsenviro.som

C Newcastle: 5 Rosegum Rd. Warabrook NSW 2304 Ph:02 4968 9433 Esamples.newcastle@alsenwro.com

☐ Brisbane: 32 Shand St. Stafford QLD 4063 Ph:07 3243 7222 E:samples brisbane@alsenviro.co/n

☐ Townsville: 14-15 Desma Ct, Bohle QLD 4818 Ph:07 4796 0600 E: townsville.environmental@alsenviro.com Cl. Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com

Cl. Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@elsenviro.com □ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples perth@alsenwio.com □ Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenwio.com

LIENT:	Shellharbour City Council	·			OUND REQUIREMENTS :	☐ Standa	ard TAT (List o	due date):					FOR	LABORATO	RY USE C	ONLY (Circle)
FFICE:	41 Burelli St WOLLONGONG NSW	2500		e.g., Ultra Tr	AT may be longer for some tests ace Organics)		tandard or urg	ent TAT (Li		_			Custr	oy Seal Imaci) ke i frozenike		Yes No 11 N/A
ROJECT:	Dunmore Quarterly Surface Waters	EPL		ALS QUO	TE NO.: WO/030/19 TEND	DER			—— r		ENCE NUMBI	, ,	recen	97		
RDER NUMBER:									COC:	1 2	3 4	5 6	100,000	on Sample Te		n Recept C
ROJECT MANAGER:			SAMPLER	HOBILE:		RELINQUI	CUED DV.		OF:	1 2 EIVED BY:	3 4	5 6	paki jaking	comment ISHED BY:		RECEIVED BY:
AMPLER:	_bert Dal;	•	EDD FORM	-	ılt\-		oe 1	. •	RECE	IVED D1.			KELINGO	ISHED DI.		RECEIVED BT.
mail Reports to	(120 / 110)		255 1 01411	(0. 40.40	,.	DATE/TIME	-		DATE	TIME:			DATE/TIM	Ε:		DATE/TIME:
mail Invoice to :						150	2.20	14'	40							
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L:	CC reports to	:					!							
ALS USE DNLY	SAMPLE MATRIX: So				CONTAINER INF	FORMATION					-			sted to attract s		Additional Information
					:						Total Fe					Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID		DATE / TIME	MATRIX	TYPE & PRESERVA' (refer to codes belo		TOTAL BOTTLES	TSS	NT-1, NT-2 (lonic Balance)	TOC & BOD	Dissolved and Total	Turbidity	NH4 & NO3	Alkalinity		
	SWP1	15,1	2.0 11:3	5 W				√	✓		√					Field Tests - pH
	SWC_2			5 W				✓	<u> </u>		1		1	1		Field Tests • pH & Temp
	SWC_UP		1	9 W				✓	1		1	1	1			Field Tests - pH & Temp
.,	SWC_DOWN		1	o w				1	1		1	4	1			Field Tests - pH & Temp
	SWC_DOWN_2	,		o w				1	1		1	1	1			Field Tests - pH & Temp
	/															
														Enviro	nment	al Division
		1											 	Work	igung Order F	i i i i i i i i i i i i i i i i i i i
	i												 	EV	V20	105661
							40								12.00	
						TOTAL							<u>L</u>	翻 拼 \$		* #14
	P = Unpreserved Plastic; N = Nitric Preserved; VB = VOA VIal Sodium Bisulphate Preserved; VB = VOA VIAL Sodium Bisulphate Preserved; VB = VOA VIAL SODIUM BISULPHATE PROPERTY OF THE PROPERTY	ved; VS =		erved; AV = Air	freight Unpreserved Vial SG = Su									epp.org.	02 42 YESE	94 S;

CERTIFICATE OF ANALYSIS

Work Order : **EW2005661** Page : 1 of 4

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Australia NSW Australia

Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Surface Water EPL Date Samples Received : 15-Dec-2020 16:00

Order number : 130985 Date Analysis Commenced : 15-Dec-2020

C-O-C number : 22-Dec-2020 20:31

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

· Robert DaLio

No. of samples received : 5
No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Telephone

Sampler

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW

Page : 2 of 4 Work Order : EW2005661

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EG020: LOR's have been raised due to matrix interference. (High Total Dissolved Solids)
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordace with in-house sampling method EN/67.6 Rivers and Streams.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2005661

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	15-Dec-2020 11:30	15-Dec-2020 12:15	15-Dec-2020 12:10	15-Dec-2020 12:20	15-Dec-2020 12:30
Compound	CAS Number	LOR	Unit	EW2005661-001	EW2005661-002	EW2005661-003	EW2005661-004	EW2005661-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
pH		0.1	pH Unit	7.5	7.8	7.7	7.8	7.8
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	14	<5	5	<5	17
EA045: Turbidity								
Turbidity		0.1	NTU	4.0		1.1	0.9	1.0
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	11	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	334	133	131	132	130
Total Alkalinity as CaCO3		1	mg/L	345	133	131	132	130
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	77		2660	2690	2680
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	251		18600	19100	18800
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	56		428	430	430
Magnesium	7439-95-4	1	mg/L	34		1200	1200	1220
Sodium	7440-23-5	1	mg/L	193		10200	10200	10400
Potassium	7440-09-7	1	mg/L	15		367	364	375
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.12	<0.50	<0.50	<0.50	<0.50
EG020T: Total Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.24	<0.50	<0.50	<0.50	<0.50
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L		0.04	<0.01	0.10	0.03
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L		<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L		0.06	2.58	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)		vser						
Nitrite + Nitrate as N		0.01	mg/L		0.06	2.58	<0.01	<0.01
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	15.6		583	597	589

Page : 4 of 4
Work Order : EW2005661

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Samplir	ng date / time	15-Dec-2020 11:30	15-Dec-2020 12:15	15-Dec-2020 12:10	15-Dec-2020 12:20	15-Dec-2020 12:30
Compound	CAS Number	LOR	Unit	EW2005661-001	EW2005661-002	EW2005661-003	EW2005661-004	EW2005661-005
				Result	Result	Result	Result	Result
EN055: Ionic Balance - Continued								
ø Total Cations		0.01	meq/L	14.4		573	573	584
Ø Ionic Balance		0.01	%	4.02		0.82	2.07	0.42

CHAIN OF CUSTODY

ALS Laboratory: please tick >

C Sydney: 277 Woodbark Rd. Smithfield NSW 2176 Ph: 02 8784 8655 Ejsamples sydney@alsenviro.com

☐ Newcastle: 5 Rosegum Rd, Warsbrook NSW 2304 Ph 02 4968 9433 E samples newcastle@alsenviro.com Ph 07 4796 0600 E: townsville.environmental@alsenviro.com

Brisbane 32 Shand St. Stefford QLD 4063
 Ph:07 3243 7222 E samples brisbane@alser.viro.com

Townsville: 14-15 Degrae Ct. Boble Ol D 4318

Cl. Melbourne 2-4 Westali Rd. Springvale VIC 3171 Ph:03 8549 9600 E: samples, melbourne:@alsenvirs.com

F) Adelaide: 2-1 Burna Rd. Poeraka SA 5095 Ph: 08 8359 0890 Fradelade@alsenvira.com

Cl. Perth: 10 Hod Way, Melega WA 6090 Ph: 68 9209 7665 E: samples perth@alsenviro.com

D Launceston: 27 Wellington St. Launceston TAS 7250 Ph. 03 6331 2158 E launceston@elsenvirc.com

	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2	2500		UND REQUIREMENTS : T may be longer for some tests ace Organics)		ard TAT (List andard or urg		ist due date)	:				OR LABORAT	4		N/A
PROJECT:	Dunmore Quarterly Leachate	une .	ALS QUOT	E NO.: WO/03	30/19 TENDE	R			COC SEC	QUENCE NUME	BER (Circle)	Fre	story Sear Intel se loe / Inozen in Sept?	e bricks preser	tupon yes No	N/A
ORDER NUMBER:								COC:	\vdash		5 6	推選	ndam Sample T	empereture or	Recept	
PROJECT MANAGER:	1							OF:	1 2		5 6	130,000	ner comment:			9 41
	obert Mul				RELINQUIS	SHED BY: -> 		REC	EIVED BY	:		RELING	UISHED BY:		RECEIVED BY:	
COC emailed to ALS? (YES / NO)	EDD FORMA	T (or defaul	t):	4		- ,								DATE THE	
mail Reports to :		- 			DATE/TIME و مسرر	: 2 2 2 3	IC.	ا ما الما الما الما الما الما الما الما	E/TIME:			DATE/TI	ME:		DATE/TIME:	
Email Invoice to :					1>-1	25	17.	٠ حسته								
COMMENTS/SPECIAL I	HANDLING/STORAGE OR DISPOSA	L: CC reports to:														
ALS USE ONLY		E DETAILS lid(S) Water(W)		CONTAINER INF	ORMATION					-			e listed to attract		Additional Information	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	T0C	Total Fe & Mn	NT-4 (NO2, NO3)				Comments on likely contaminant levels, or samples requiring specific QC analysis	ilutions, i etc.
	Leachate Sump	12.20 15.10	w				✓	1	1	1 1					Field Tests - pH, EC, Temp &	k DO
	7.3	12. 0 (31.														
*																
							., ,	ļ								
								l l								
								1								
										Envi	ronme	ntal Di	ivision			
	,							<u> </u>	 	Mol	Innanna	r		-	78 ATT 107	
								ļ		W	ork Orde	r Refer	600 5658			
										t	ZVVZ	UUC	ococ			
										-	M242 M 635 MM 1	m er an 20.61	15. (1984)			
									<u> </u>							
									\perp							
									Managetti							
										ं स्थानकः	one 1942	983175				
						40			+			1		1		
	TOTAL 10															

CERTIFICATE OF ANALYSIS

Work Order : **EW2005658** Page : 1 of 4

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Leachate Date Samples Received : 16-Dec-2020 12:39

Order number : 130985 Date Analysis Commenced : 15-Dec-2020

C-O-C number : ---- Issue Date : 22-Dec-2020 15:27

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER
Quote number : WO/030/19 TENDER LEACHATE

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 4
Work Order : EW2005658

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for Nitrite due to sample matrix.
- EK059G: LOR raised for NOx due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordace with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2005658

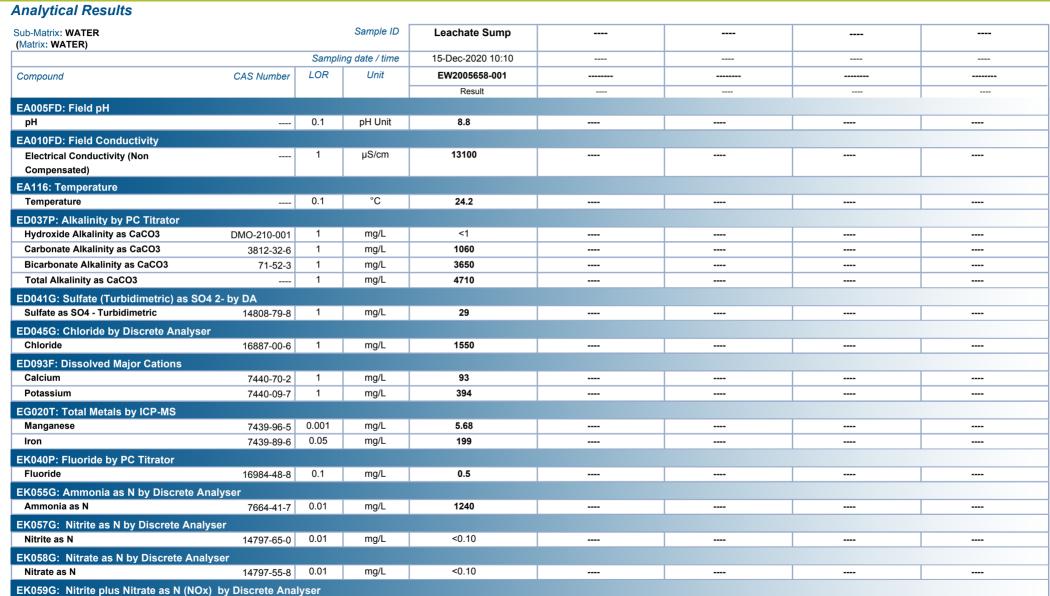
Nitrite + Nitrate as N

Total Organic Carbon

EP005: Total Organic Carbon (TOC)

0.01

mg/L

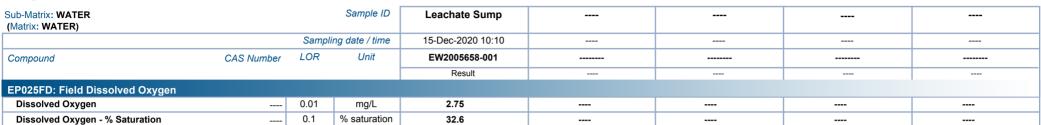

mg/L

< 0.10

712

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate



Page : 4 of 4
Work Order : EW2005658

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

CHAIN OF CUSTODY

ALS Laboratory: please tick >

□ Sydney: 277 Woodperk Rd. Smithfield NSW 2176

Ph. C2 8794 8556 E.sambles.sydney@aldserving.com
Ph.07 3243 7222 E.sambles.br.sbare@alserving.com

Newcastler 5 Rosegum Rd, Warabrock NSW 2304

 Townsviller 14-15 Desma Ct Boile QLD 4818
 New Ct 16-0 04/2 C counter or prepared financial control of the Ct 16-10 04/2 C counter or prepared financial contro

□ Melbourne 2-4 Westall Rd, Springvele VIC 3171 □ Perth 10 Hed Way Maraga WA 6090
Ph 03 8549 9600 E: santoles melbourne@aiserviro.com
Ph: 08 9209 7655 E: samtiles.certlyff.aiserviro.com Adelaide: 2-1 Burma Rd, Pooraka SA 5096

E. Launceston: 27 Wellingron St. Launceston TAS 7250

PTIUZ 4903 34	ica Elsamples newcastleigalsenviro com Prior 4796 0000 i	ti townsville.enwformenial@alcenwro.com Ph; 98 s.	359 Q 88	U Etadei	മ വഴത്രമ	isenviro con	1	Pi	ft; 93 6931 2156 britauncesteri@atsenviro.com	m ·
Shellharbour City Council	TURNAROUND REQUIREMENTS:	☐ Standard TAT (List due date):							FOR LABORATORY USE ONLY	(Circle)
41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	☐ Non Standard or urgent TAT (List due	date)	:					Custody Seef Intact?	Yes No N/A
Dunmore Quarterly Leachate	ALS QUOTE NO.: WO/0	30/19 TENDER		coc	SEQUE	NCE NUM	BER (Circ	de)	Free loe / frozen ice bricks present up receipt?	on Yes No N/A
			coc:	1	2	3 4	5	6	7 Råndom Sample Temperature on Rec	olepts TOTAL
R: Joel Culton			OF:	1	2	3 4	5	6	7 Other comment:	
Robert Pakin si	AMPLER MOBILE:	RELINQUISHED BY:	REC	EIVED	BY:			R	RELINQUISHED BY:	RECEIVED BY:
S?(YES / NO) EE	DD FORMAT (or default):	12 bent.								
		DATE/TIME:	DATE	E/TIME	:			D	DATE/TIME:	DATE/TIME:
		15.4.7 44	Þ							
	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate R: Joel Culton	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate R: Joel Culton SAMPLER MOBILE:	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate ALS QUOTE NO.: SAMPLER MOBILE: FOR YES / NO) Standard TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard or urgent TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due date): (Standard TAT may be longer for some tests on the standard TAT (List due dat	Shellharbour City Council TURNAROUND REQUIREMENTS: Standard TAT (List due date): (Standard TAT may be longer for some tests e.g. Ultra Trace Organics) Non Standard or urgent TAT (List due date) Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC: R: Joel Culton ASAMPLER MOBILE: RELINQUISHED BY: REC G?(YES / NO) EDD FORMAT (or default): DATE/TIME: DATE	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC COC: 1 1 SAMPLER MOBILE: EDD FORMAT (or default): DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME:	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate ALS QUOTE NO.: Standard TAT (List due date): Ooc: Ooc: Op: 1 2 CCC SEQUE R: Joel Culton SAMPLER MOBILE: ST(YES / NO) DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME:	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC: 1 2 3 4 R: Joel Culton SAMPLER MOBILE: FIGURE ALS QUOTE MOBILE: FIG	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500 Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC: 1 2 3 4 5 R: Joel Culton SAMPLER MOBILE: RELINQUISHED BY: CY (YES / NO) RECEIVED BY: DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: CStandard TAT (List due date): Standard TAT (List due date): Non Standard or urgent TAT (List due date): COC: 1 2 3 4 5 RECEIVED BY: DATE/TIME: DATE/TIME: DATE/TIME:	Shellharbour City Council TURNAROUND REQUIREMENTS: Standard TAT (List due date): (Standard TAT may be longer for some tests e.g. Ultra Trace Organics) Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC SEQUENCE NUMBER (Circle) COC. 1 2 3 4 5 6 R: Joel Culton RELINQUISHED BY: RECEIVED BY: FOR YES / NO) DATE/TIME: DATE/TIME: DATE/TIME:	Shellharbour City Council TURNAROUND REQUIREMENTS: Standard TAT (List due date): (Standard TAT may be longer for some tests of Ultra Trace Organics) Dunmore Quarterly Leachate ALS QUOTE NO.: WO/030/19 TENDER COC: 1 2 3 4 5 6 7 Cotton Sample remperature on Reserving Councils R: Joel Culton RELINQUISHED BY: ST(YES / NO) EDD FORMAT (or default): DATE/TIME: DATE/TIME:

Email Reports to :				DATE/TI	ME: . 12 - 3	k	7,40 DATE	/TIME:			DATE/TIME:		DATE/TIME:
	HANDLING/STORAGE OR DISPOSA	AL: CC reports to	<u> </u>				<u>, тр</u>					****	
ALS USE ONLY		E DETAILS olid(S) Water(W)		CONTAINER INFORMATION	ON				to attract suite price)	Additional Information			
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	Leachate Storage Tank - LP1	15.12.22 9:5	55W			~	V	1	1	*			Field Tests - pH, EC, Temp & DO
				· · · · · · · · · · · · · · · · · · ·									
				· • · · · ·									
										3 +	Environme Vollopgor	ental Divisio	n
											Work Ord	ng er Reference 200565	9
						,							
				-									
											apropro da 40	2953195	
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preser	ved Plastic; ORC = Nitric Preser	ved ORC; SH = 1	. TOT sodium Hydroxide/Cd Preserved; S = Sod	140	eserved Pla	stic; AG = Ambe	er Glass Ung	eserved; AP	- Airfreight Ur	preserved Plastic		

CERTIFICATE OF ANALYSIS

Work Order : **EW2005659** Page : 1 of 4

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529 4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Leachate Tank EPL Date Samples Received : 15-Dec-2020 16:00

Order number : 130985 Date Analysis Commenced : 15-Dec-2020

C-O-C number : ---- Issue Date : 22-Dec-2020 15:27

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER
Quote number : WO/030/19 TENDER LEACHATE

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 4
Work Order : EW2005659

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate Tank EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for Nitrite due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix.
- EK059G: LOR raised for NOx due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordace with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2005659

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate Tank EPL

Sub-Matrix: WATER (Matrix: WATER)		Samul	Sample ID	Leachate Storage Tank LP1 15-Dec-2020 09:55	 	
	04044 /		_		 	
Compound	CAS Number	LOR	Unit	EW2005659-001	 	
EARRED, Field will				Result	 	
EA005FD: Field pH		0.1	pH Unit	8.1	 	
•		0.1	prionit	0.1	 	
EA010FD: Field Conductivity		1	uC/om	44400		
Electrical Conductivity (Non		1	μS/cm	14400	 	
Compensated)						
EA116: Temperature Temperature		0.1	°C	24.4	 	
•		0.1	C	24.4	 	
ED037P: Alkalinity by PC Titrator		•				
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4980	 	
Total Alkalinity as CaCO3		1	mg/L	4980	 	
ED041G: Sulfate (Turbidimetric) as SO4						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<20	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1530	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	20	 	
Potassium	7440-09-7	1	mg/L	48	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.422	 	
Iron	7439-89-6	0.05	mg/L	5.06	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.5	 	
EK055G: Ammonia as N by Discrete An	alvser					
Ammonia as N	7664-41-7	0.01	mg/L	1260	 	
EK057G: Nitrite as N by Discrete Analy						
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Analy			<u> </u>			I .
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
			9, -	-0.10		<u> </u>
EK059G: Nitrite plus Nitrate as N (NOx) Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	
		0.01	IIIg/L	\0.10	 	
EP005: Total Organic Carbon (TOC)						

Page : 4 of 4
Work Order : EW2005659

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate Tank EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	15-Dec-2020 09:55	 	
Compound	CAS Number	LOR	Unit	EW2005659-001	 	
				Result	 	
EP005: Total Organic Carbon (TOC) - 0	ontinued					
Total Organic Carbon		1	mg/L	673	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	1.26	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	14.9	 	

Appendix C

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CHAIN OF CUSTODY

ALS Laboratory: please tick >

☐ **Sydney**: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 E.samples.sydney@alsenviro.com

☐ Newcastle: 5 Rosequm Rd. Warabrook NSW 2304 ☐ Townsville: 14-15 Desma Ct. Bohle QLD 4818 Ph:02 4968 9433 E:samples.newcastle@alsenviro.com

D Brisbane: 32 Shand St. Stafford QLD 4053

Ph:07 3243 7222 E samples brisbane@alserviro.com Ph:07 4796 0600 E: townsville.environmental@alsenviro.com Cl. Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E, samples,melbourne@alsenviro.com

☐ Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

☐ Perth: 10 Hod Way, Malaga WA 6090

Ph: 08 9209 7655 E: samples.perth@alsenviro.com

☐ Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

T														Financia			
CLIENT:	Shellharbour City Council	A. A. B. H	1	UND REQUIREMENTS:		lard TAT (List	,							FOF	LABORATO	RY USE O	NLY (Girde)
OFFICE:	Dunmore		e.g Ultra Tra	T may be longer for some tests ice Organics)	☐ Non S	Standard or urg	ent TAT (List	due đ	ate):		_			Cust	ody Seaf Intact?	100	Yes No N/A
PROJECT:	Dunmore Dust		ALS QUO	TE NO.: WO/030/19 TEND	DER				coc	SEQUE	NCE NU	IMBER	R (Circ	e) Free recei	ice / frozen ice b pt?	ncks preser	fupon Yes No N/A
ORDER NUMBER:			<u> </u>					0	:oc: 1	2	3	4	5	7 Rand	lom Sample Ten	nperature on	Receipt: C 1
PROJECT MANAGER:	Joel Culton								OF: 1.	2	3	4	5 (7 Othe	rcomment		
SAMPLER: \$\(\frac{1}{\perp}\)	obert Dalo	SAMPLER N	MOBILE:		RELINQUI			R	ECEIVED	BY:				RELINQU	ISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	lt):] [2	loor-1	•										
Email Reports to :					DATE/TIME			- 1	ATE/TIM	E:				DATE/TIM	E:		DATE/TIME:
Email Invoice to :					15.1.	2.90	14:4	⊃									
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports to	:														
					4		ANAI VČIS	S DEO	IUDED :-		- CUITO	-e ///	3 D. 4- 6				1
ALS USE ONLY		LE DETAILS olid(S) Water(W)		CONTAINER INF	FORMATION	1									sted to attract su d filtered bottle requ		Additional Information
																	Comments on likely contaminant levels, dilutions, or samples requiring specific QC
						Ì											analysis etc.
							<u>(S</u>										
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA' (refer to codes belo		TOTAL BOTTLES	CM, TIS)										
				(10101 10 00000 0010	***)	BOTTLES											
							Ast										
							A04 (Ash,										
	DDG1	15.120 10:30	AIR				▼										
	DDG2	1 10:35					✓										
1-7-1-1	DDG3	11:05	T				1				.	+					
	DDG4					-	1						E.,	wironme	ental Divi	SiOti	<u> </u>
		9:49															· · · · · · · · · · · · · · · · · · ·
													* 1	Work Ord	G er Referen	ce	1
					******	į.				-		_		EWa	20056	360	
	'									-							
		+															
										-					THE WAY		-
														ausione 024	A-2 (alt lates)		
												=	· :#1	en a 100 de - 172 d	Z * 1 H. 1 * 1 P.		
				Parana Clar										 			
					TOTAL												
V = VOA Viai HCI Preserve	P = Unpreserved Plastic; N = Nitric Preser d; VB = VOA Vial Sodium Bisulphate Prese	rved; VS = VOA Vial Sulfuric Preser	ved: AV = Airfr	eight Unpreserved Vial SG = Sul	S = Sodium H furic Preserved	lydroxide Preser d Amber Glass:	ved Plastic; AG H = HCl prese	erved P	er Glass U lastic; HS	npreserv	ved; AP - reserved	Airfre Speck	ight Unpi	eserved Plastic e; SP = Sulfurio	Preserved Plast	tic: F = Form	naldehyde Preserved Glass:
Z = Zinc Acetate Preserved	Bottle; E = EDTA Preserved Bottles; ST = 3	Sterile Bottle: ASS = Plastic Bag for	r Acid Sulphate	Soils; B = Unpreserved Bag.			•					•					

CERTIFICATE OF ANALYSIS

Work Order : **EW2005660** Page : 1 of 2

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

· 30-Dec-2020 22:19

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Australia NSW Australia

-- Telephone : +61 2 4225 3125

Project : Dunmore Landfill Dust Date Samples Received : 16-Dec-2020 12:38

Order number : 130985 Date Analysis Commenced : 17-Dec-2020

C-O-C number : ---- Issue Date
Sampler : Robert DaLio

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER DUST

: 4

No. of samples received : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

No. of samples analysed

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 2 Work Order : EW2005660

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Newcastle.
- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation is not held for results reported in g/m².mth.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 13-11/2020 - 15/12/2020	DDG2 13-11/2020 - 15/12/2020	DDG3 13-11/2020 - 15/12/2020	DDG4 13-11/2020 - 15/12/2020	
		Sampli	ng date / time	15-Dec-2020 10:30	15-Dec-2020 10:35	15-Dec-2020 11:05	15-Dec-2020 09:40	
Compound	CAS Number	LOR	Unit	EW2005660-001	EW2005660-002	EW2005660-003	EW2005660-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.6	0.4	1.9	3.7	
Ash Content (mg)		1	mg	11	8	35	70	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.2	0.3	0.7	1.8	
Combustible Matter (mg)		1	mg	5	5	14	33	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.8	0.7	2.6	5.5	
Total Insoluble Matter (mg)		1	mg	16	13	49	103	

Appendix D

Surface Gas (Methane) Field Sheets

			ALS Landfi	II Emissions Re	port
Client:	Shellharbour City C	ouncil		Date:	9/12/2020
Site:	Dunmore	ounce		Sampler(s)	Robert DaLio,
		T			
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
	A 1	6168 183	302 344	3.0	
	A 2	6168 166	302 352	3.2	
	А 3	6168 143	302 349	3.0	
	A 4	6168 123	302 346	2.9	
	A 5	6168 092	302 346	2.8	
	A 6		302 341	3.8	
	В 1	6167 960	302 318	2.9	
	B 2	6167 993	302 328	2.8	
	В 3	6168 010	302 332	2.9	
		6168 043	302 332		
	. 4	6167 086	302 339	3.0	
	B 5				
·		0107 110	302 341	3.0	
·	B 7	6168 114	302 337	2.9	
	B 8		302 338 302 334	3.0	
	В] 9	6168 186	302 334	3.2	
	C 1	6168 277	302 260	2.8	
	C 2		302 276	2.9	
(С 3		302 291	2.9	
	C 4	6168 106	302 309	2.9	
	C 5	6168 043	302 317	2.9	
	C 6		302 319	2.9	
	C 7		302 308	2.9	
· '	C 8	6167 847	302 300	2.9	
	n 1	6167 980	302 277	3.4	
	D 2	6167 989	302 278	4.0	
	D 3	6168 011	302 268	3.4	
	D 4	6168 027	302 270	3.4	
ı	D 5	6168 046	302 270	3.5	
	D 6		302 270	3.5	
	D 7		302 268	3.5	
'	D 8	6168 070	302 266	3.5	
	F 1	6168 069	302 227	3.0	
	E 2	6168 059	302 232	3.0	
	E 3	6168 040	302 235	3.0	
	E 4	6168 019	302 241	3.2	
	E 5		302 246	3.2	
	E 6		302 245	3.4	
	E 7	6167 986	302 254	3.4	
	-	0407.007	202.240	9.4	
	F 2	6167 937 6167 957	302 249 302 239	9.4	
	F 3	6167 976	302 239	2.8	
	F 4	6167 005	302 215	2.8	
	F 5	6167 022	302 209	2.9	
	F 6		302 203	2.9	
1					
	-	6168 219	302 166	2.8	
	G 2		302 196 302 226	2.8	
	G 4		302 243	2.8	

I	ı	I.	I.	I	I
Н	1	6168 025	302 413	2.5	
Н	2	6168 029	302 459	2.5	
Н		6168 011	302 391	2.5	
Н		6167 975	302 393	2.5	
н		6167 950 6167 915	301 395 301 401	2.5	
н	6	6167 884	301 401	2.5	
н	. 8		302 411	2.5	
н	9		302 429	2.6	
Н	10	6167 949	302 438	2.6	
н	11	6167 992	302 413	2.6	
Н	T		302 459	2.7	
Н	13		302 391	3.0	
Н			302 393	3.2	
Н			302 395 302 401	2.9	
н			302 406	2.9	
н	18		302 411	3.0	
н	19		302 429	2.8	
н	20	6168 214	302 430	2.7	
Н			302 368	2.5	
Н			302 354	2.5	
H	23		302 293	2.6	
Н			302 202 302 152	2.6	
Н			302 152	2.8	
Н			302 061	2.8	
Н			302 027	2.8	
Н	29	6168 075	301 997	2.8	
Н			301 973	2.8	
Н			301 970	2.9	
н			301 970	2.8	
Н Н	33		301 972 302 018	5.0	
н			302 056	30.3	
Н			302 160	4.2	
н			302 243	4.0	
н	38	6167 703	302 350	4.6	
	1	6167 933	302 150	2.9	
	2	6167 930 6167 930	302 101 302 053	3.1	
	4	6167 934	301 990	2.8	
J	1	6168 152	302 102	2.8	
J	2	6168 120	302 113	2.8	
J	3	6168 077	302 127	2.9	
J	4	6168 025	302 144	2.9	
J	5	6167 992	302 155	2.9	
к	1	6168 320	302 264	2.8	
к	. 2	6168 335	302 297	2.8	
L L	3	6168 351	302 345	2.9	
K		6168 383	302 343	2.9	
		6168 400	302 352	3.0	
K					
К		6168 381	302 266 302 282	2.9	
K	,	6168 365		2.9	
K	8	0108 3/8	302 317	2.9	
		6168 561	302 226	3.8	
1	. 2	6168 536	302 226	3.8	
	. 3	6168 501	302 193	3.8	
L	. 4	6168 474	302 160	3.8	
L	. 5	6168 443	302 135	3.8	
L	. 6	6168 407	302 116	3.8	
L	7	6168 329	302 045	3.8	
Compressor Shed				6.0	
Compressor Shed Office	1			2.8	
Community Recycling Centre	1			2.5	
OLD Weighbridge				2.8	
OLD Weighbridge Toilet				10.4	
Revolve Shop				2.6	
Building Truckwash	1			2.8	
New Weighbridge	1 1	I	I .	2.6	
Mathema Directs (Processing					The state of the s
Methane Blank (Pre testing) Methane Blank (Post testing)				2.1	Taken at entrance to Dunmore site before main gate Taken at entrance to Dunmore site before main gate
, ()	•				· · · · · · · · · · · · · · · · · · ·
Comments:					

Sampling performed in accordance to EPA Environmental Guidelines Solid Waste Landfills, Second Edition, 2016 Gas concentrations are reported as raw values without correction for background concentration.

Appendix E

Calibration Certificates

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Kalibrierzertifikat Nummer -Calibration Certificate number:

19252 H-02174

Instrument:

Laser One

Seriennummer - Serial number

19252

Beschreibung des Kalibriervorgangs:

Die Kalibrierung des Gerätes erfolgt durch Messung der Reaktionszeit des Sensors unter Beaufschlagung von geeichten Prüfgasen. Der angewandte Kalibriervorgang entspricht der Arbeitsweise des Gerätes. Der maximale Messfehler des Messgerätes wie im Datenblatt angegeben.

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 1000 ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	2.7	2.2	2.3	2.3	2.27	0.50	0.05	0.05
1000	3.1	3.2	3.2	3.2	3.20	0.10	0.01	0.01
1000	10.3	10.3	10.3	10.3	10.30	0.00	0.00	0.00
1000	107	99	99	99	99.00	8.00	0.80	0.80
1000	1000	995	996	996	995.67	5.00	0.50	0.50

Unsicherheit - Uncertainty	0.80	%
Maximaler Fehler % - Max % error	0.80	% FS

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 100 % vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00
10.00	2.20	2.20	2.20	2.20	2.20	0.00	0.00	0.00
10.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.30	15.30	15.30	15.30	0.30	0.30	0.30
100.00	50.00	50.50	50.50	50.50	50.50	0.50	0.50	0.50
100.00	100.00	100.00	100.00	100.00	100.00	0.00	0.00	0.00

Unsicherheit - Uncertainty	0.50	 %
Maximaler Fehler % - Max % error	0.50	% FS

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 100% CH4 LEL (0 - 4.4% vol)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum error %
10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10.00	2.00	1.99	1.99	1.99	1.99	0.01	0.10	0.10
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Incertezza - Uncertainty	0.10	%	
Massimo errore % - Max % error	0.10	% FS	

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Umgebungsbedingungen für die Kalibrierung - Environmental conditions during calibration

Temperature	21.2	С	
Pressure	990	mBar	

Gasflaschen zur Kalibrierung - Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
Synthetic Air	S1624403EE	19/05/2023	Synthetic Air
3 ppm	143123SG	11/04/2024	CH4
10 ppm	114031SG	11/04/2024	CH4
100 ppm	S1145642R	20/10/2024	CH4
1000 ppm	S1100299S	10/04/2024	CH4
1.0 vol	S1198415S	10/04/2024	CH4
2.2% vol	SP1230777S	29/10/2024	CH4
5% vol	220622	15/01/2022	CH4
15% vol	220594	15/01/2022	CH4
50% vol	232920	08/11/2021	CH4
100% vol	S1260447	05/07/2023	CH4

Kalibrierungsergebnisse Pass Calibration results

Kalibrierungsdatum 24/02/2020

Calibration date

Nächste geplante Kalibrierung 24/02/2021

Next scheduled calibration

Laura McBride

Calibration done by

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

SERVICE REPORT

Issued by: QED Environmental Systems Ltd.

Customer Name:

HGS SAS Huber Date of Service:

Data manutenzione:

24-Feb-20

Azienda:

Guenther & C

Next Service due:

Feb-21

Model:

Modello:

Laser One

Prossima data di manutenzione:

Serial Number:

Numero di serie:

19252

Service comments:

Verbale di manutenzione:

Full service, opened tables to 100% and

calibrated device.

Calibration / Taratura

Standard service checks carried out / Manutenzione standard

Pump cleaned / Pulizia della pompa

Adhesive filter/Filtro adesivo

Service Engineer / Operatore:

Signature / Firma

Laura McBride

17025

Our ISO accreditation for our customised auto-calibration facilities

Number of days we aim to complete your service within

50

Number of checks instruments are subject to when serviced

Number of countries from which we service instruments /accessories each year

7,384

Number of calibrations 12 months

Minimum number

Cost (in £) of fully insured our UK customers

SERVICE REPORT

Issued by: QED Environmental Systems Ltd.

17025

Our ISO accreditation for our customised auto-calibration facilities 5 per of days

Number of days we aim to complete your service within

50

Number of checks instruments are subject to when serviced 65

Number of countries from which we service instruments /accessories each year 7,384

Number of calibrations completed in last 12 months 340

Minimum number of service instruments

25

Cost (in £) of fully insured analyser collection for

www.qedenv.com

+44 (0) 333 800 0088

sales@qedenv.co.uk

Appendix F

Overflow Event Results

CERTIFICATE OF ANALYSIS

Work Order : **EW2005038** Page : 1 of 2

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary Pl, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Landfill Overflows Date Samples Received : 06-Nov-2020 14:24

Order number : 130985 Date Analysis Commenced : 06-Nov-2020

C-O-C number : ---- Issue Date : 13-Nov-2020 16:33

Sampler : Glenn Davies

Site : ----

Quote number : WO/030/19 TENDER OVERFLOW DISCHARGE

No. of samples received : 2

No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW	
Glenn Davies	Environmental Services Representative	Administration - Wollongong, NSW	
Glenn Davies	Environmental Services Representative	Laboratory - Wollongong, NSW	
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW	

Page : 2 of 2 Work Order : EW2005038

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Overflows

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordace with in-house sampling method EN/67.4 Lakes and Reservoirs

Sub-Matrix: WATER	Client sample ID		SWP1	SWP2				
(Matrix: WATER)				Point 1	Point			
Client sampling date / time				06-Nov-2020 10:40	06-Nov-2020 10:30			
Compound	CAS Number	LOR	Unit	EW2005038-001	EW2005038-002			
				Result	Result			
EA005FD: Field pH								
рН		0.1	pH Unit	7.1	7.9			
EA025: Total Suspended Solids dried at 104 ± 2°C								
Suspended Solids (SS)		5	mg/L	11	<5			
Sampling Method								
Dummy Analyte		1	-	<1	<1			

