

Quarterly Environmental Monitoring Report (QEMR) Q2 March 2024

Address: **Dunmore Recycling & Waste Depot**

44 Buckleys Road, Dunmore, NSW, 2529

Project No.: **ENRS0033**

Date: April 2024

ENRS PTY LTD ABN 68 600 154 596 T 02 4448 5490 F 02 4448 5490 E: projects@enrs.com.au www.enrs.com.au

Author and Document Control

Written / Submitted By	Reviewed / Approved By
Beespr	
Taite Beeston (BSc.) Geologist & Environmental Consultant	

Record of Distribution:

Copies	Status	Document	Date	Prepared For
PDF Rev.1 202403 Q2_ENRS0033_SCC Dunmore Landfill_QEMR		30/04/2024	ALS c/- SCC	

Executive Summary

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Quarterly Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (QEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the second quarter of the 2023-2024 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this AEMR are to:

- ➤ Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the March 2024 monitoring event in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- ➤ Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- ➤ Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- > Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the March 2024 Q2 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- ➤ Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater bores. These exceedances were considered to be consistent with historical values;
- Offsite sample locations within Rocklow Creek reported concentrations for ammonia above the ecological stressor value;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- ➤ Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1, with the exception of DDG4. The cause should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;

- ➤ Based on the data reviewed for the March 2024 Q2 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data:
- ➤ Flare temperatures were below the required KPI of 760 degrees Celsius throughout the quarter. The reader is referred to the LGI Flare Reports provided in **Appendix G**;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

Table of Contents

E	kecutiv	e Summary	iii
1	Intr	oduction	10
	1.1	Project Background	10
	1.1.	1 Site History	10
	1.2	EPL Requirements	10
	1.3	Objectives	11
	1.4	Scope of Work	11
2	Site	Identification	11
	2.1	Site Identification	11
	2.2	Surrounding Land Use	13
	2.2.	1 Sensitive Receptors	13
	2.3	Topography	14
	2.4	Soil Landscape	14
	2.5	Geology	14
	2.6	Hydrogeology	14
	2.6.	1 Existing Bores	14
	2.6.	2 Flow Regime	15
	2.7	Surface Water	15
3	Ass	essment Criteria	15
	3.1	Water Quality Guidelines	15
	3.1	Groundwater & Surface water Assessment Criteria	16
	3.1.	1 Ammonia Assessment criteria	17
	3.2	Dust Deposition Assessment Criteria	17
	3.3	Surface Methane Gas Assessment Criteria	17
	3.4	Gas Accumulation Assessment Criteria within Enclosed Structures	17
4	Dat	a Quality Objectives (DQO)	18
	4.1	Step 1: State the problem	18
	4.2	Step 2: Identify the decision/goal of the study	18
	4.3	Step 3: Identify the information inputs	18
	4.4	Step 4: Define the study boundaries	18
	4.5	Step 5: Develop the analytical approach (decision rule)	18

	4.6	Step	6: Specify performance or acceptance criteria	19
	4.7	Step	7: Develop the plan for obtaining data	19
5	Sam	npling	g Methodology	19
	5.1	Wat	er Sampling	20
	5.1.	.1	Location of Water Monitoring Points	20
	5.1.	.2	Depth to Water	20
	5.1.	.3	Sample Collection	20
	5.1.	.4	Groundwater Sampling	20
	5.1.	.5	Field Testing	21
	5.2	Dust	t Deposition Sampling	21
	5.3	Surf	ace Methane Gas Monitoring	21
	5.4	Gas	Accumulation Monitoring in Enclosed Structures	21
	5.5	Labo	oratory Analysis	22
	5.6	Flare	e Monitoring	22
	5.7	QAC	QC	22
6	Wat	ter Qı	uality Results	22
	6.1	Ove	rflow Results	23
	6.2	Phys	sical Indicators	23
	6.2.	.1	Groundwater Depth	23
	6.2.	.2	Salinity	
	6.2.		Dissolved Oxygen	
	6.2.		pH	
	6.2.		Total Suspended Solids (TSS)	
			ganic Analytes	
	6.3.		Ammonia	
	6.3.		Nitrate	
	6.3.		Nitrite	
	6.4		ons	
	6.4.		Chloride	
	6.4.		Fluoride	
	6.4.		Sulphate	
	6.4.		Total Alkalinity	
	6.4.	.5	Bicarbonate Alkalinity	26

	6.5	Met	als	26
	6.5	.1	Manganese (Total Mn)	26
	6.5	.2	Iron (total Fe)	27
	6.5	.3	Iron (Dissolved Fe)	27
	6.5	.4	Calcium	27
	6.5	.5	Potassium	27
	6.6	Orga	anic Analytes	27
	6.6	.1	Total Organic Carbon	27
7	Dus	st Gau	ge Results	. 27
8	Me	thane	Monitoring Results	. 28
	8.1	Surf	ace Gas Methane	28
	8.2	Gas	Accumulation Monitoring in Enclosed Structures	28
9	Fla	re Ope	erations Results	. 28
10) Qu	ality A	ssurance/Quality Control Data Evaluation (QAQC)	. 29
	10.1	Field	Sampling QAQC	29
	10.2	Labo	pratory QAQC	31
	10.3	QAC	QC Discussion	33
11	. Qu	arterly	y Environmental Assessment	. 34
	11.1	Mor	nitoring Point Summary	34
	11.2	Envi	ronmental Management	35
	11.	2.1	Landfill Operations	35
	11.3	Envi	ronmental Safeguards	35
	11.4	Mor	nitoring Program	35
12	. Cor	nclusio	ons	. 36
13	Ref	ierenc	es	. 37
14	Lim	nitatio	ns	. 38
	ict d	∽f T	ables	
L	ISL (JI I	ables	
			e Identification	
			mmary of surrounding land use	
			nter Quality Assessment Criteria	
ıa	ible 3-	2: Gr	oundwater & Surface Water Assessment Criteria	16

Table 4-1: Summary of Data Quality Objectives (DQO)	. 19
Table 5-1: Summary of QAQC for Sample Program	. 22
Table 7-1: Summary of Dust Gauge Results	. 28
Table 10-1: Sampling QAQC Procedures	
Table 10-2: Laboratory QAQC procedures	. 32
Table 10-3: QAQC and Data Evaluation Summary	. 33
Table 14-1: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 1	. 43
Table 14-2: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 1	. 44
Table 14-3: Duplicate Groundwater Sample Results and QC Data – Quarter 1	
Table 14-4: Duplicate Surface Water Sample Results and QC Data – Quarter 1	. 46
List of Figures	
Figure 2-1 Project Location	
Figure 14-1: Sampling Points & Site Plan	
Figure 14-2: Surface Methane Gas Sample Transects	. 41

Appendices

Appendix A:	EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022)
Appendix B:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples
Appendix C:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples
Appendix D:	Surface Gas (Methane) Field Sheets
Appendix E:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events
Appendix F:	Calibration Certificates
Appendix G:	Gas Flare Reports

1 Introduction

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Quarterly Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (QEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the second quarter of the 2023-2024 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 Project Background

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.3 Objectives

The objectives of this AEMR are to:

- ➤ Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- > Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

1.4 Scope of Work

The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the March 2024 monitoring event in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- ➤ Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- > Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2 Site Identification

2.1 Site Identification

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 2-1** below. Details of the Site boundary and sampling points are provided in the Site Plan as **Figure 14-1**. The key features required to identify the Site are summarised in **Table 2-1**.

Table 2-1: Site Identification

Site	Description
Site name	Dunmore Recycling and Waste Depot
Street address	44 Buckleys Road, Dunmore, NSW 2529

Site	Description
Property description	-
(Lot / Deposited Plan)	21 / 653009 and 1 / 419907
Easting/Northing (GDA2020) (approximate centre of Site)	Zone 56H Easting: 302280 Northing: 6168169 (Approximate centre of Site)
Current owners	Shellharbour City Council
Current occupiers	Shellharbour City Council
Site area (total)	72.36 hectares
Site dimensions	Irregular shaped block. Please refer to Figure 14-1.
Areas excluded or inaccessible	Assessment was limited to the available data for the sample points listed in the EPL
Local government area	Shellharbour City Council
Current zoning	RU1 Primary Production
Locality map	Albion Park 9028
Trigger for assessment	Reporting requirements of EPL 5984
State or Local government statutory controls	 EPL 5984; EPL 12903; Contaminated Land Management Act 1997; Environment Protection Act 1997; Environment Protection Regulation 2005. Resilience and Hazards SEPP; Work Health and Safety Act 2011; Work Health and Safety Regulations 2011; Waste Avoidance and Resource Recovery Act (2001).
Legal permissions to access the Site obtained or required	N/A. ENRS did not access the Site.
Consent of adjoining landowners and/or occupiers to access land (if required)	N/A. Not required for this scope of work.

THE STATE OF THE S

Figure 2-1 Project Location

Source: https://maps.six.nsw.gov.au/ (cited 1/11/2023)

2.2 Surrounding Land Use

The current activities and operations on adjacent properties and the surrounding area include:

Table 2-2: Summary of surrounding land use

Direction	Land Use
North	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- Recreational users of the Minnamurra River estuary environs;
- Neighbouring and down gradient stakeholders;
- Ecological receptors flora and fauna.
- > Shallow soil, groundwater and stormwater vertical and lateral migration of contaminants (if any) and connectivity with shallow groundwater, drainage waterways and nearby tributaries; and
- ➤ Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 Topography

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 Soil Landscape

Review of the Sites soil landscape was conducted with reference to the Kiama 1:100,000 soil landscape map. The Site was mapped as underlain by organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils.

2.5 Geology

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet (See Figure 4). The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 Hydrogeology

Groundwater resources in the area are expected to be associated with Shallow unconfined alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the NSW Office of Water (NOW) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see Figure 5). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (Boral Site) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences, 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 Surface Water

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3 Assessment Criteria

ENRS have adopted the most appropriate criteria in accordance with current state and national guidelines. Where available, Australian and NSW EPA endorsed guidelines have been referenced in preference to international standards.

3.1 Water Quality Guidelines

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC;2013). The relevant criteria to protect environmental values are provided in **Table 3-1**:

Table 3-1: Water Quality Assessment Criteria

Environmental Value	Relevant Guideline
Ecosystems / Health Screening Levels	 ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality); ASC NEPM (2013); and Health Screening Levels for Petroleum Hydrocarbons in Soil & Groundwater (CRC CARE, Sept. 2011)
Drinking Water	Australian Drinking Water Guidelines (ADWG)

3.1 Groundwater & Surface water Assessment Criteria

The ANZG (2018) provide <u>default guideline values</u> (DGVs) for four (4) levels of protection categorised by the percent of species possibly affected, being 80%, 90%, 95% or 99% of species. Where DGVs are not available reference is made against the ANZECC (2000) Trigger Values (TV). The NSW Office of Water (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the 95 per cent of species level of protection. This assessment has adopted the assessment criteria considered most appropriate for the contaminants of concern based on the Site's EPL and results provided by ALS. The adopted TV for the Site Assessment Criteria (SAC) are summarised in **Table 3-2** below.

Table 3-2: Groundwater & Surface Water Assessment Criteria

Analyta	Units	Fresh	Marine	Drinkin	g Water ^B
Analyte	Units	Water ^A	Water ^A	Health	Aesthetic
Chloride	mg/L	-	-	-	250
Calcium	mg/L	-	-	-	-
Magnesium	mg/L	-	-	-	-
Sodium	mg/L	-	-	-	180
Potassium	mg/L	-	-	-	-
Manganese	mg/L	1.9	-	0.5	0.1
Total iron	mg/L	-	-	-	0.3
Dissolved iron	mg/L	-	-	-	0.3
Fluoride	mg/L	-	-	1.5	-
Ammonia as N ^C	mg/L	0.91 (pH 8)	0.91 (pH 8)	-	0.5
Nitrate as N	mg/L	0.7	-	50	-
Nitrite as N	mg/L	-	-	3	-
Total Organic Carbon	mg/L	-	-	-	-
Bicarbonate alkalinity as CaCO3	mg/L	-	-	-	-
Total alkalinity as CaCO3	mg/L	-	-	-	-
Sulfate as SO4 - turbidimetric	mg/L	-	-	-	250
Dissolved Oxygen - %	%				
Saturation		85-110%	-	-	-
(surface water only)					
Suspended Solids (SS) (surface water only)	mg/L	-	-	-	-

Analyte	Units	Fresh	Marine	Drinking Water ^B		
Allalyte	Ullits	Water ^A	Water ^A	Health	Aesthetic	
Turbidity	NTU				5	
(surface water only)		-	-	-	ວ	
рН	рН	6.5-8.5		6.5-8.5	6.5-8.5	
Electrical Conductivity	μS/cm	2200	-	-	-	

Table notes:

Criteria is only provided for the analytes test by ALS and listed within EPL 5984.

- A: Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.
- B: Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).
- D. Criteria for ammonia. See Section 3.1.1:

3.1.1 Ammonia Assessment criteria

In addition to the default TV of 0.91mg/L (pH 8) for ammonia, Table 3.3.2 of the ANZECC (2000) also provides stressor values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems. The table provides a stressor guideline for ammonia of **0.2mg/L** at pH 8 for lowland rivers. For the purposes of this assessment, the value has been applied to all water samples, excluding the leachate tank.

pH specific ammonia TVs. Additional sample point specific pH dependant trigger values for total ammonia were also adopted when a sample was outside of 8 pH units. Sample specific values were based on Table 8.3.7 of the ANZECC (2000). The additional criteria and results are presented in **Table 14-2** attached.

3.2 Dust Deposition Assessment Criteria

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1-Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m2/month.

3.3 Surface Methane Gas Assessment Criteria

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.4 Gas Accumulation Assessment Criteria within Enclosed Structures

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or within 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4 Data Quality Objectives (DQO)

If sampling is conducted, Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented in the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013).

4.1 Step 1: State the problem

The Site is currently operating as an active landfill and requires regular environmental monitoring in accordance with the EPL 5984.

4.2 Step 2: Identify the decision/goal of the study

The primary goals / objectives of the investigation program were to:

- ➤ Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

4.3 Step 3: Identify the information inputs

The provided results shall be used to identify any risks to the sensitive receptors or change in site conditions. The following inputs were required:

- > Representative environmental samples:
- Measurements of environmental parameters;
- Comparison of the parameter results against the adopted Site Assessment Criteria (SAC);
- The completion of an Quarterly Environmental Monitoring Report.

4.4 Step 4: Define the study boundaries

The assessment was limited to sampling locations listed in EPL 5984. As listed in **Appendix A** and depicted in **Figure 14-1** - **Figure 14-2**.

4.5 Step 5: Develop the analytical approach (decision rule)

The site information and results obtained from this assessment scope will be compared against the NSW EPA endorsed SAC documented in **Section 3** with considerations of the land use and nearby receptors. The decision rule process is defined by the following:

- QA/QC indicate the results are reliable;
- ➤ Laboratory Practical Quantitation Limits (PQL) or Limits of Reporting (LOR) are less than the SAC; and

Results meet the adopted SAC and/or are within background levels and regulatory criteria.

4.6 Step 6: Specify performance or acceptance criteria

To ensure the quality of the environmental data collected during the assessment, detailed quality assurance and quality control (QA/QC) measures will be applied by ALS. The QA/QC measures will be followed from the inception of the project, during field sampling, laboratory analysis of samples and data reporting. The QAQC measures understood to have been adopted by ALS are documented in detail below within **Table 5-1**.

4.7 Step 7: Develop the plan for obtaining data

The seventh and final step involves identifying the most effective sampling and analysis design for generating the data that is required to satisfy the data quality objectives. The required sampling program is based on and accounts for the following key points:

- Requirements of Sites EPLs; No. 5984 and 12903;
- The results will be compared against the adopted SAC for the proposed land use.

The indicators (DQI) used to identify that data obtained and provided by ALS has been done so in a way which meets project data quality objectives (DQO) summarised below.

Table 4-1: Summary of Data Quality Objectives (DQO)

200	
DQO	Evaluation Criteria
Documentation completeness	 Completion of field records, chain of custody documentation, laboratory test certificates from NATA-accredited laboratories.
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	 Adequate sampling coverage of all required EPL sample points.
Precision and accuracy for sampling and analysis	 Use properly trained and qualified field personnel and achieve laboratory QC criteria.
	 Blind field duplicates to be collected at a minimum rate of 1 in 20 samples.
	 RPD's to be less than 30% for inorganic and 50% for organic analyses.
	 Rinsate samples not considered necessary as all PCoC measured by the lab were assumed to be present at the site.
	• Disposable single use items used for the collection of samples.

5 Sampling Methodology

Field sampling was conducted by ALS Environmental (Wollongong) as commissioned by SCC on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following subsections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

5.1 Water Sampling

5.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime includes; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and one (1) leachate point. Sampling locations are illustrated in Figure 2 attached.

5.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. No LNAPL was reported on field sheets provided by ALS.

5.1.3 Sample Collection

Sampling is conducted independently by ALS Environmental under contract with SCC. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling was conducted in accordance with ALS sampling protocols.

5.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes with samples being collected using clear disposal bailers or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Post sampling all samples were sealed in laboratory-prepared sampling containers appropriate for the analysis.

Surface water samples were collected as 'grab samples' from the midpoint of the source at middepth.

Post flushing, leachate samples were sampled from a tap on the discharge line directly into purpose specific, pre preserved sample containers.

All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;

- Sample containers contain zero headspace;
- > Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

5.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- > Temperature; and
- > pH (Acidity).

5.2 Dust Deposition Sampling

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month periods at during each quarterly sampling event. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

5.3 Surface Methane Gas Monitoring

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in Figure 3. Transects were recorded using a Magellan SporTrak GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste.

5.4 Gas Accumulation Monitoring in Enclosed Structures

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in Figure 3. Any depressions or surface fissures away from the sampling grid were also investigated.

5.5 Laboratory Analysis

ALS, a NATA accredited laboratory, was contracted by SCC to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.6 Flare Monitoring

Landfill gases (LFG) are formed through bacterial action on emplaced waste and are a normal by-product of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare was monitored, maintained and operated by LGI LTD. Copies of LFG reports for the relevant reporting period are included as Appendix G.

5.7 QAQC

The Quality Assurance and Quality Control (QA/QC) protocols for the sample program conducted by ALS are summarised in **Table 5-1**.

Table 5-1: Summary of QAQC for Sample Program

Protocol	Description
Sampling Team	Site personnel comprised only experienced and qualified environmental professionals trained in conducting site contamination investigations.
Sample Method	Samples obtained in laboratory prepared containers with preservatives appropriate for the required analysis.
Calibration	Equipment calibration certificates for each sampling event.
Sample Equipment	All sample equipment disposed or decontaminated between sample sites.
Field Screening	Visual and manual inspection of sample materials for potential contamination recorded on field sheets.
Chain of Custody Forms	All samples logged and transferred under appropriately completed Chain of Custody (COC) forms with Sample Receipts issued by the laboratory.
Blind Field Duplicate	At least one (1) blind field duplicate collected per 20 samples and submitted for analysis accompanied by COC forms.

6 Water Quality Results

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in **Table 14-1** - **Table 14-2** with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in **Appendix B**.

6.1 Overflow Results

ENRS understands that three (3) overflow events occurred during the Q2 March 2024 monitoring period. Over flow samples were collected by ALS at the SWP1 overflow point. Overflow events were recorded on the 20/12/2023, 6/02/2024 and 18/03/2024. Analysis was conducted for total suspended solids (TSS) and pH. Results generally reported a neutral pH and TSS below the lower limit of reporting of <5mg/L.

6.2 Physical Indicators

6.2.1 Groundwater Depth

The measured depth to groundwater was measured between 0.73 mbgl (BH-15) to 4.82 mbgl (BH-14). The Site was charactered by a shallow water table hosted in the underlying unconsolidated sand and sediments.

6.2.2 Salinity

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2,200 μ S/cm (~1,500 mg/L). Marine waters may be characterised by an EC between 35,000 μ S/cm - 50,000 μ S/cm.

Groundwater

During the monitoring period, salinity in groundwater samples reported a relatively low degree of variance between each sampling event. The Site was generally characterised freshwater EC values in the upgradient northern portions of the Sites, tending to become more saline towards Rocklow Creek, being a tidal river system. The results were all considered to be in range of historical values.

Surface Waters

Surface water samples collected from Rocklow Creek reported EC values between 25,200 μ S/cm (SW_Up) and 33,000 μ S/cm (SWC_Down 2). EC values were expected to be elevated and fluctuate due to Rocklow Creek being a tidal system.

Results for onsite surface water location SWP1 was reported at 871 µS/cm which was below the adopted TV. The results were generally in range of historical data.

Leachate

Leachate salinity was 3,520 μ S/cm which was above the TV. The result was generally in range of historical data. Salinity in leachate is expected to vary significantly with leachate concentration and stormwater dilution.

6.2.3 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field for surface waters only. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient

metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZG (2018) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm. DO is reported by the laboratory in mg/L which be converted to a percentage.

Surface Waters

Dissolved Oxygen within onsite surface water location SWP-1 was 3.53mg/L or 38.81%. Results were generally below the TV and were consistent with historical data.

Results for DO within offsite surface water locations within Rocklow Creek ranged from 3.39 mg/L or 37.27% (SWC_2) and to 4.25 mg/L or 46.73% (SWC-Down 2). The results were generally consistent with the historical data.

Leachate

Dissolved oxygen within leachate tank LP1 was 3.32 mg/L or 36.5%. The results were generally in range of the historical data.

6.2.4 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

Results pH in groundwater was reported between 6.70 (BH19r) and 7.60 (BH18). The results were relatively neutral and within the SAC. No exceedances were recorded. The results were considered to be satisfactory.

Surface Water

Results for pH in surface waters reported neutral conditions between 7.20 and 7.40 which was within the SAC and was considered satisfactory.

Leachate

The pH of leachate tank LP1 was 8.60 which was above the SAC. The result was considered to be within range of historical values.

6.2.5 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces. TSS was measured for surface water sample points only.

Results for TSS in Rocklow Creek samples were all reported below the LOR of <5mg/L. The results were below the SAC and were considered satisfactory.

Results for TSS in onsite SWP1 was 9mg/L. The results were considered satisfactory.

6.3 Inorganic Analytes

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

6.3.1 Ammonia

Groundwater

Results for ammonia in groundwater over the monitoring period reported exceedances above the ecological stressor value of 0.2 mg/L, 95% TV of 0.91 mg/L and pH modified TV's (see Table 14-2) in all samples. Results were considered to be significantly above the SAC and within range of the previous values.

Surface Water

Ammonia in onsite surface water at SWP-1 was 0.07 mg/L which was below the SAC.

Ammonia concentrations in Rocklow Creek ranged between 0.22 mg/L (SWC_2) and 0.24 mg/L (SWC_Down 2). All Rocklow Creek samples were reported above the ecological stressor value of 0.2 mg/L. All results were below the 95% TV and pH modified TVs. Results were considered to be within range of historical data.

Leachate

Ammonia in leachate tank LP1 was 1 mg/L which was significantly below the historical data. Historically, untreated leachate has displayed elevated results.

6.3.2 Nitrate

Groundwater

Results for Nitrate in groundwater samples were generally reported results below the SAC. Three (3) exceedances were reported above the SAC of 0.7mg/L being 9.65 mg/L (BH3), 2.03 mg/L (BH13) and 5.28 mg/L (BH14).

Surface Water

Nitrate concentrations for all surface water were reported below the SAC and considered satisfactory.

Leachate

Nitrate concentrations for leachate tank LP1 was reported at 8.53 mg/L which was above the SAC. Increased concentrations of nitrate may be characterised of untreated leachate.

6.3.3 Nitrite

Results for nitrate in all groundwater, surface water and Leachate Tank LP1 were all reported below the SAC.

6.4 Anions

6.4.1 Chloride

The results for chloride in groundwater were reported between 11 mg/L (BH19r) and 971 mg/L (BH1c). Onsite surface water dam SWP1 reported concentrations of chloride of 112 mg/L. Chloride within Leachate Tank LP1 was reported at 744 mg/L.

Elevated chloride results were measured within Rocklow Creek which may be characteristic of the tidal river system. In comparison, upgradient groundwater results reported slightly lower chloride concentrations. Results were generally consistent with historical data.

6.4.2 Fluoride

The results for fluoride in groundwater, surface water and leachate tank were all reported below the SAC and were generally consistent with the historical data.

6.4.3 Sulphate

Results for sulphate in groundwater generally reported satisfactory results that were in range of the historical data. Higher sulphate results were reported in Rocklow Creek, which may be characteristic of the tidal river system.

6.4.4 Total Alkalinity

Surface Water

Results for total alkalinity were consistent with historical data and considered to be satisfactory.

6.4.5 Bicarbonate Alkalinity

Bicarbonate alkalinity in groundwaters were consistent with historical data and considered to be satisfactory.

6.5 Metals

6.5.1 Manganese (Total Mn)

Groundwater

Results for manganese in all groundwater, surface water and leachate tanks samples were reported below the 95% TV of 1.9 mg/L. The results were generally consistent with historical data.

6.5.2 Iron (total Fe)

Total iron was measured in surface water and leachate tank LP1 only. Results for total iron were reported between 0.17mg/L (SWC_Down 2) and 4.20 (LP1). The results were generally consistent with historical data.

6.5.3 Iron (Dissolved Fe)

Concentrations of dissolved iron in groundwater were reported results between 0.18 mg/L (BH9) and 16.5 mg/L (BH22). The results were generally consistent with the historical data.

6.5.4 Calcium

Results for calcium in groundwater, surface water and leachate tank LP1 were reported between 41 mg/L (SWP1) and 286 mg/L (SWC_Down 2).

6.5.5 Potassium

Results for potassium in groundwater, surface water and leachate tank LP1 were all reported within range of historical data.

6.6 Organic Analytes

6.6.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater. However, high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- providing carbon substrate for microbe-based biodegradation.

Results for TOC in groundwater samples were generally low and consistent with historical data.

TOC in surface water samples reported satisfactory results.

TOC in leachate tank LP1 was 166mg/L which was generally consistent with historical data.

7 Dust Gauge Results

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month for each quarterly sampling round between 02/11/2023 - 01/12/2023. Sampling was conducted in general accordance with AS3580.10.1. Dust gauge locations are provided in **Figure 14-1** attached. A summary of the results is provided in **Table 7-1** below.

Table 7-1: Summary of Dust Gauge Results

Quarter	Sample ID	Guideline Criteria (g/m2/month)	Total Insolvable Matter (g/m2/month)	Comment
Quarter 2	DDG1		0.5	Below SAC
4/03/2024	DDG2	4	0.8	Below SAC
	DDG3	4	1.5	Below SAC
DDG4		5.3	Below SAC	

Results for depositional dust during the March 2024 Q2 monitoring period generally reported levels of dust below the adopted assessment criteria of 4 g/m²/month. A single exceedance was report for DDG4 of 5.3 g/m²/month. DDG4 also reported an exceedance within the Q1 period. It is recommended that monitoring is continued in accordance with EPL 5984.

8 Methane Monitoring Results

8.1 Surface Gas Methane

The surface gas monitoring for the March 2024 Q2 quarterly monitoring period DID NOT detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in **Appendix D**.

8.2 Gas Accumulation Monitoring in Enclosed Structures

The internal methane testing for enclosed structures within 250m of the landfill during the March 2024 Q2 quarterly monitoring period DID NOT detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory.

9 Flare Operations Results

Weekly average operating temperatures for the flare were supplied by LGI and displayed typical variation associated with a continuous process. Results are summarised in Chart 1 below. LGI Gas Flare reports included as **Appendix G**.

Weekly average operating temperatures for the Q2 period supplied by LGI displayed an average temperature of 478.9 degrees celsius. This was lower than the historical data and below the minimal operational temperature limit of 760 degrees as specified within EPL 5989. The decline was first measured on the 19/12/2024 and was relatively consistent throughout the Q2 monitoring period.

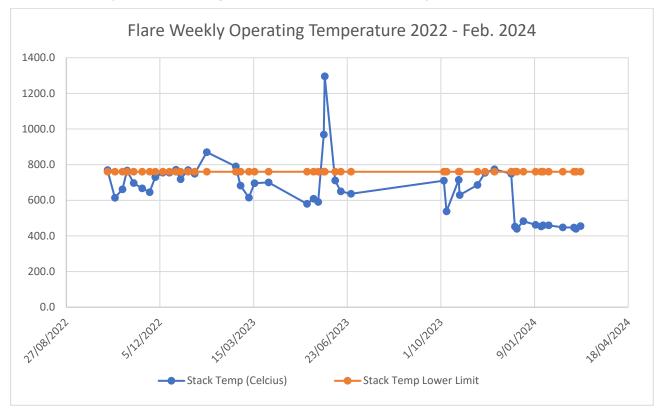
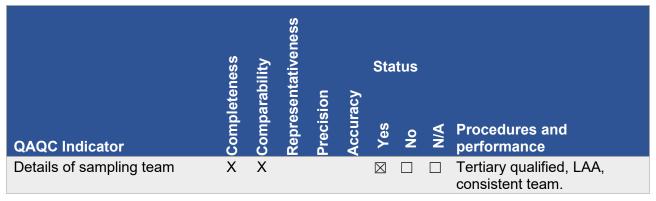


Chart 1: Weekly Flare Operating Temperatures 2022 - February 2024

Notes: Data sourced from the LGI reports provided in Appendix G.


10 Quality Assurance/Quality Control Data Evaluation (QAQC)

10.1 Field Sampling QAQC

It was understood that the sample program was completed in general accordance with the ALS standard operation procedures (SOP) which references current industry guidelines.

The QAQC procedures and indicators for field sampling procedures are summarised in Table 10-1.

Table 10-1: Sampling QAQC Procedures

	Completeness	Comparability	Representativeness	recision	Accuracy		itus		
QAQC Indicator		Con	Rep	Prec	Acc	Yes	8 N	¥ Z	Procedures and performance
Reference to sampling plan/method, including any deviations from it – sampling and analysis quality plan	X								Sampling in accordance with the SOP.
Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)				X	X				Field sampling records and chain of custody completed in full.
Decontamination procedures carried out between sampling events			X	X	X				Equipment such as decontaminated between samples by washing with phosphate free detergent followed by rinsing with potable water. Re-use of sampling equipment was avoided, where possible. Single use deposable sampling equipment was the preferred method.
Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos.		X	X						Sampling field sheets were used as required.
Chain of custody fully identifying – for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s) (where applicable)	X	X							COC's completed in full.

			sseu						
	Completeness	rability	Representativeness	uc	cy	Sta	itus		
QAQC Indicator	Comple	Comparabi	Repres	Precision	Accuracy	Yes	N _O	N/A	Procedures and performance
Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)				X	X				Field QAQC analysed for chemical samples – field duplicate.
Sample splitting techniques – subsampling, containers/preservation (ensure unique ID for subsequent samples provided)			X						Samples obtained in laboratory prepared sample containers appropriate for the analytes.
Statement of duplicate frequency			Χ	Χ		\boxtimes			Blind field duplicates collected at 1/20 frequency
Background sample results	X	X				\boxtimes			Reviewed against previous investigation results.
Field instrument calibrations (when used)				X	X			\boxtimes	Yes field equipment was calibrated prior to use.
Sampling devices and equipment	X	Χ							Manual sampling with decontamination procedures and disposable equipment.
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	X	X							COC's completed in full, final records from NATA laboratory attached to CoAs.

10.2 Laboratory QAQC

The QAQC procedures and indicators for laboratory analysis procedures are summarised in Table 10-2.

Table 10-2: Laboratory QAQC procedures

	tenes	rability	entativ	u	<u>ئ</u>	Stat	tus		
QAQC Indicator	Completenes	Comparabili	Representativ	Precision	Accuracy	Yes	ON No	A/N	Procedures and performance
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	X	X							All samples were logged and transferred under appropriately completed Chain of Custody Forms.
Record of holding times and a comparison with method specifications	Χ	X				\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Analytical methods used, including any deviations	Χ	Χ							Recorded in the CoA.
Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation	X			X					Recorded in the CoA.
Laboratory performance for the analytical method using interlaboratory duplicates		X			X	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Surrogates and spikes used throughout the full method process, or only in parts. Results are corrected for the recovery	X	X							Records documented in the laboratory QAQC report attached to CoA.
A list of what spikes and surrogates were run with their recoveries and acceptance criteria (tabulate)		X			X	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Practical quantification limits (PQL)	X	X				\boxtimes			Recorded in the CoA. PQLs <sac.< td=""></sac.<>
Reference laboratory control sample (LCS) and check results	X								Records documented in the laboratory QAQC report attached to CoA.
Laboratory duplicate results (tabulate)	X				X	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory blank results (tabulate)	X				X				Records documented in the laboratory QAQC report attached to CoA.
Results are within control chart limits	X					\boxtimes			Records documented in the laboratory QAQC report attached to CoA.

	es	ility	ativ		Status				
QAQC Indicator	Completenes	Comparabilit	Representativ	Precision	Accuracy	Yes	No	N/A	Procedures and performance
Evaluation of all quality assurance/control information listed above against the stated data quality objectives, including a quality assurance/control data evaluation	X	X	X	X	X				Records documented in the laboratory QAQC report attached to CoA.

10.3 QAQC Discussion

A summary of the Data Quality performance and evaluation is summarised in **Table 10-3** below:

Table 10-3: QAQC and Data Evaluation Summary

Objective	Performance	Status
Documentation completeness	 Completion of field records; Chain of Custody (COC) documentation; Calibration certificates for equipment; NATA Laboratory Sample Receipt Notification (SRN); and NATA laboratory Certificate of Analysis (COA). Sample Location Plans. Sample field sheets. 	✓
Precision & accuracy for sampling & analysis	 Use only trained and qualified field personnel; Calibration certificates for field equipment; Appropriate sampling and field techniques; Decontamination procedures; Achieve laboratory QC criteria; and Achieve QAQC requirements for RPDs and Recovery 	√
Identify Anomalies	 No elevated results not expected by the CSM; No labelling or sample management errors; No laboratory analyses or reporting errors 	✓
DATA completeness	 Sampling density comparison meets NSW EPA (1995) 'Sampling Design Guidelines' for or all potential contaminants of concern at all areas of environmental concern; and Systematic and judgemental sampling to provide sufficient data representative of all AECs. 	✓
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of sample media; Use of NATA certified laboratory using NEPM endorsed procedures; and Comparison with previous site information, if any. 	✓

Objective	Performance	Status
Data	Adequate sampling coverage at all points listed in the EPL.	✓
representative	Selection of representative samples from each sampling location; &	
ness	Analysis for PCoC.	
	Achieve laboratory QC criteria.	
	Achieve QAQC requirements for RPDs and Recovery.	

The laboratory was NATA accredited, and the Practical Quantitation Limits (PQL) also referred to as Limits of Reporting (LOR) were within the acceptable levels for the investigation criteria. Laboratory certificates of analysis provided in **Appendix C** indicate that for the samples collected during the scope of works, sampling techniques, transport procedures and laboratory analysis were satisfactory. Analysis of Relative Percent Differences (RPD) was conducted of duplicates for each quarterly sampling event. RPDs calculation tables are provided in **Table 14-3** and **Table 14-4**. RPD results generally reported satisfactory differences within the criteria of 30% for organics and 50% for inorganics. Emissions of QA/QC including rinsate samples, trip blank spikes and triplicate were considered to me minor omissions, unlikely to impact the validity of the data.

In summary, the QA/QC indicators all complied with the required standards or showed variations that would have no significant effect on the quality of the data or the conclusions of this assessment. Based on the following conclusions it is therefore determined that, for the purposes of this study, the QA/QC results are valid, and *the quality of the data is acceptable for use in this assessment:*

- The data was representative of site conditions;
- The data was complete with comprehensive records available from all field work undertaken, and all areas of concern sampled and analysed;
- ➤ The data was comparable for samples analysed at different times, and consistent with field observations; and
- > The data was precise and accurate based on the laboratory achievement of relevant quality control criteria.

11 Quarterly Environmental Assessment

11.1 Monitoring Point Summary

Based on the results of field measurements and NATA laboratory results conducted by ALS, the following summaries were noted for the March 2024 Q2 monitoring period;

- Groundwater monitoring wells located across the site reported elevated concentrations of key indicators of leachate above the site assessment criteria, specifically ammonia. Groundwater wells were located across the Site including upgradient, adjacent to and downgradient of the landfill cells. The elevated results were generally consistent with the available historical data;
- The leachate tank LP1 reported elevated results of key leachate analysis which was considered to be characteristic of untreated leachate;
- Onsite surface water dam SWP1 generally reported results within the Site Assessment Criteria;
- Offsite surface water of Rocklow Creek generally reported conditions characteristic of a tidal river system. Concentrations of ammonia within the creek were reported above the ecological

- stressor value in all four (4) sampling locations. However, the results were reported below the ecological protection trigger values (95% and pH modified TVs).
- ➤ Dust monitoring reported a single exceedance at the DDG4 location. This location also exceeded the criteria in the previous December 2023 Q1 period.
- > Surface gas monitoring did not detect any methane above the allowable limit across the site surface transects or within onsite buildings; and
- ➤ Review of the gas flare reports prepared by LGI indicated a drop in flare temperature below the minimum requirement of 760 degrees Celsius as specified within EPL 5984. The drop in flare temperature was first detected in December 2023 and remained relatively consistent throughout the Q2 period.

11.2 Environmental Management

11.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

11.3 Environmental Safeguards

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and re-lining).

Access tracks to sampling points should be inspected and maintained prior to each quarterly sampling events.

Continue to review surface and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek. Continue to monitor surface methane gas in order to assess the capping integrity of the landfill cells.

11.4 Monitoring Program

The Site's EPL's and monitoring regime should be reviewed annually by SCC and the regulator.

Review of the March 2024 Q2 monitoring results indicated no significant change in environmental conditions at the Site. Key indicators of leachate were reported within the groundwater monitoring locations across the Site. Future sampling events should continue to monitor the key indicators of leachate within ground and surface waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the sample holding time.

12 Conclusions

Based on the findings obtained during the March 2024 Q2 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater bores. These exceedances were considered to be consistent with historical values;
- ➤ Offsite sample locations within Rocklow Creek reported concentrations for ammonia above the ecological stressor value;
- > Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- ➤ Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1, with the exception of DDG4. The cause should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;
- ➤ Based on the data reviewed for the March 2024 Q2 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data;
- Flare temperatures were below the required KPI of 760 degrees Celsius throughout the quarter. The reader is referred to the LGI Flare Reports provided in **Appendix G**;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- This report must be read in conjunction with the attached Statement of Limitations.

13 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

CRC Care (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater.

DEC NSW. (2007). Guidelines for the Assessment and Management of Groundwater Contamination.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, May.

NSW EPA. (2014). Waste Classification Guidelines. Part 1 Classifying Waste.

NSW EPA. (2020). Guidelines for consultants reporting on contaminated land.

NSW EPA (2022) Approved methods for the sampling and analysis of water pollutants in NSW

NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling design part 1: Application.

NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling Design Part 2: Interpretation.

SafeWork NSW. (2014). Guidelines for Managing Asbestos in or on Soil.

SafeWork NSW. (2022). Code of Practice on How to Safely Remove Asbestos.

WA DOH. (2009). Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia. Perth, WA: Western Australia Department of Health.

WA DOH. (2021). Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia. Perth, WA: Western Australia Department of Health.

Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales

NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984

NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903

NSW Government (1997). Protection of the Environment Operations Act.

NSW Government (2005). Protection of the Environment (Waste) Regulation.

NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B – Waste Landfills.

ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.

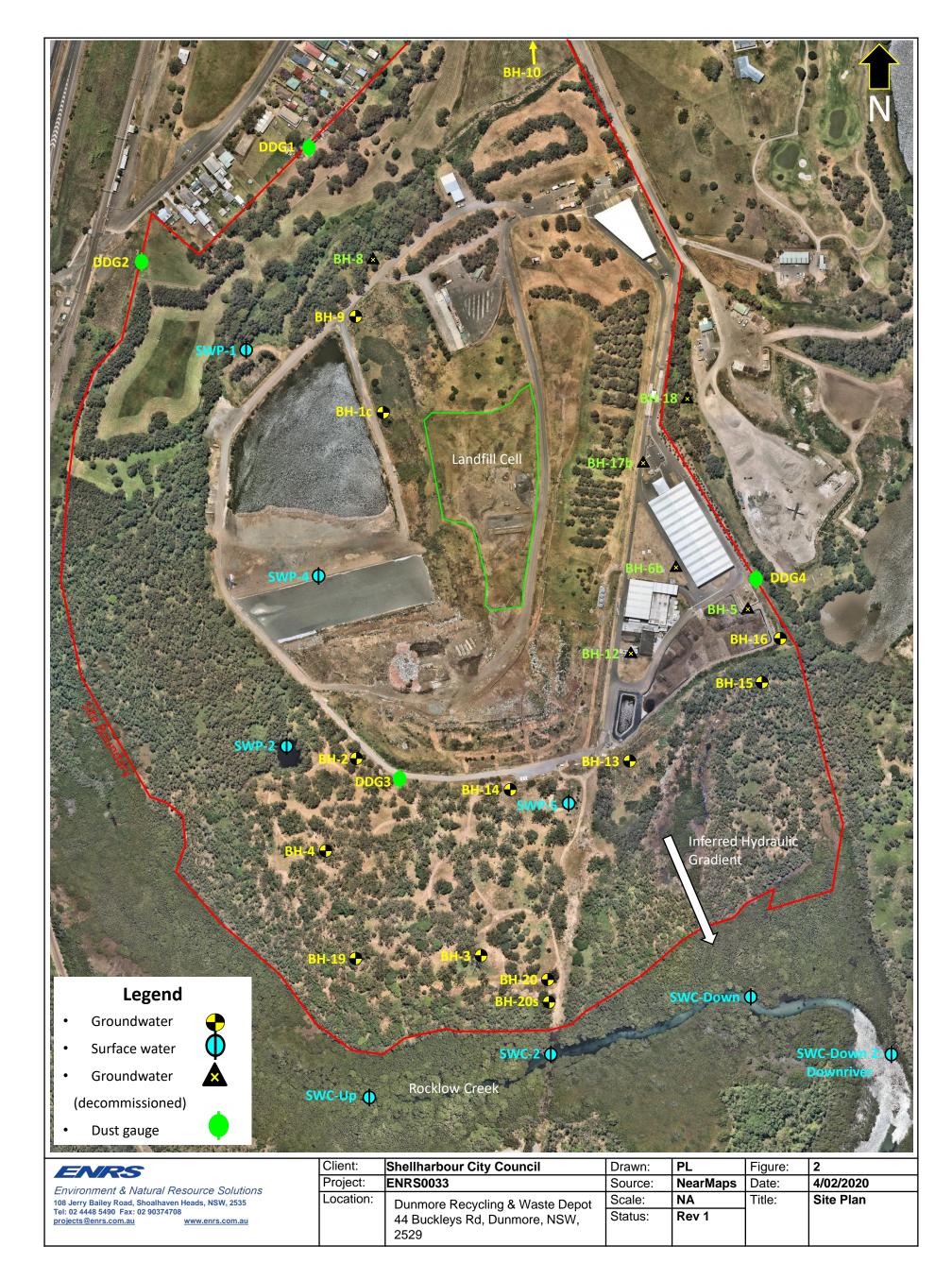
ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).

14 Limitations

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to Site.

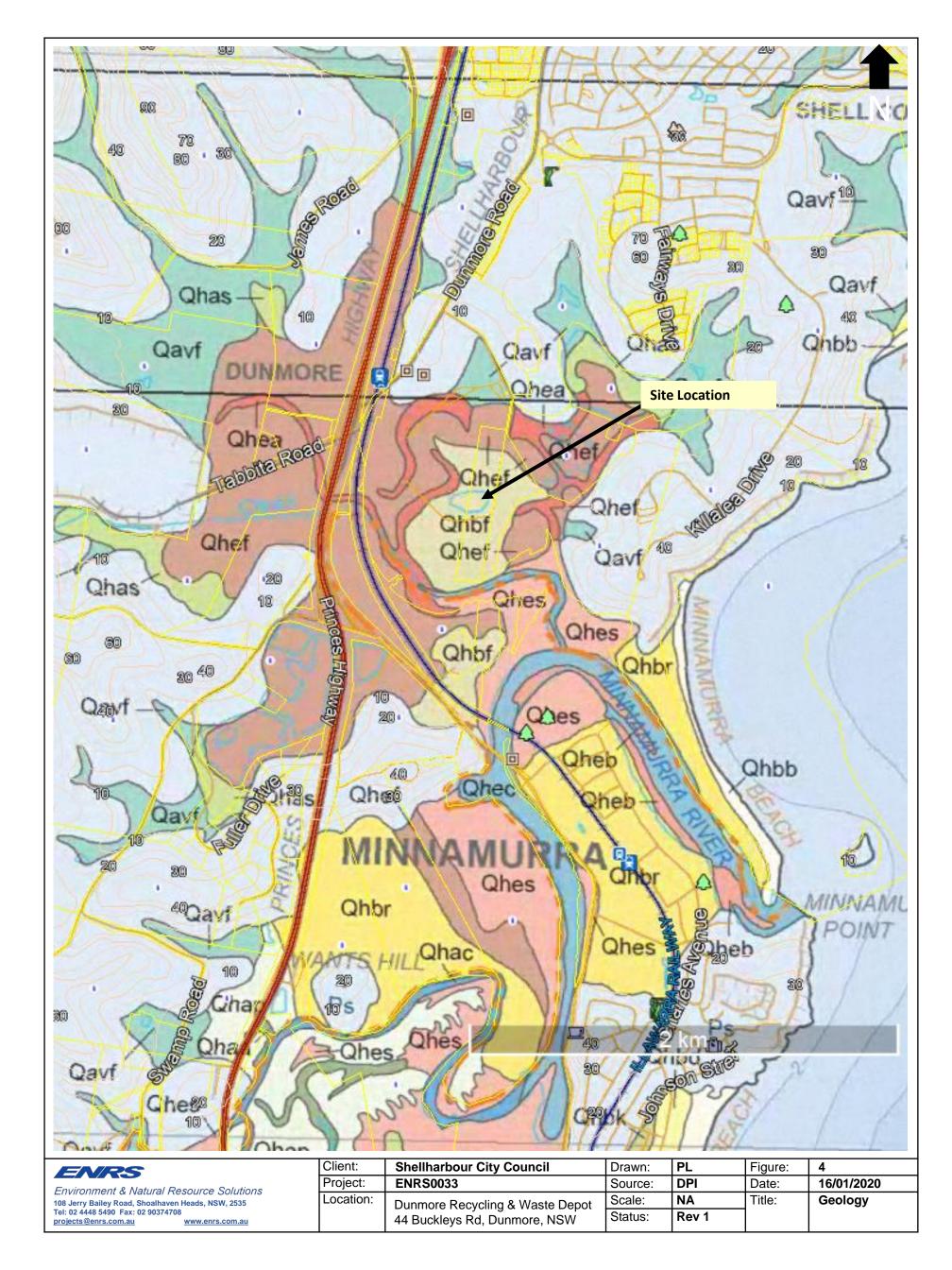
ENRS derived the data in this report primarily from visual inspections, and, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

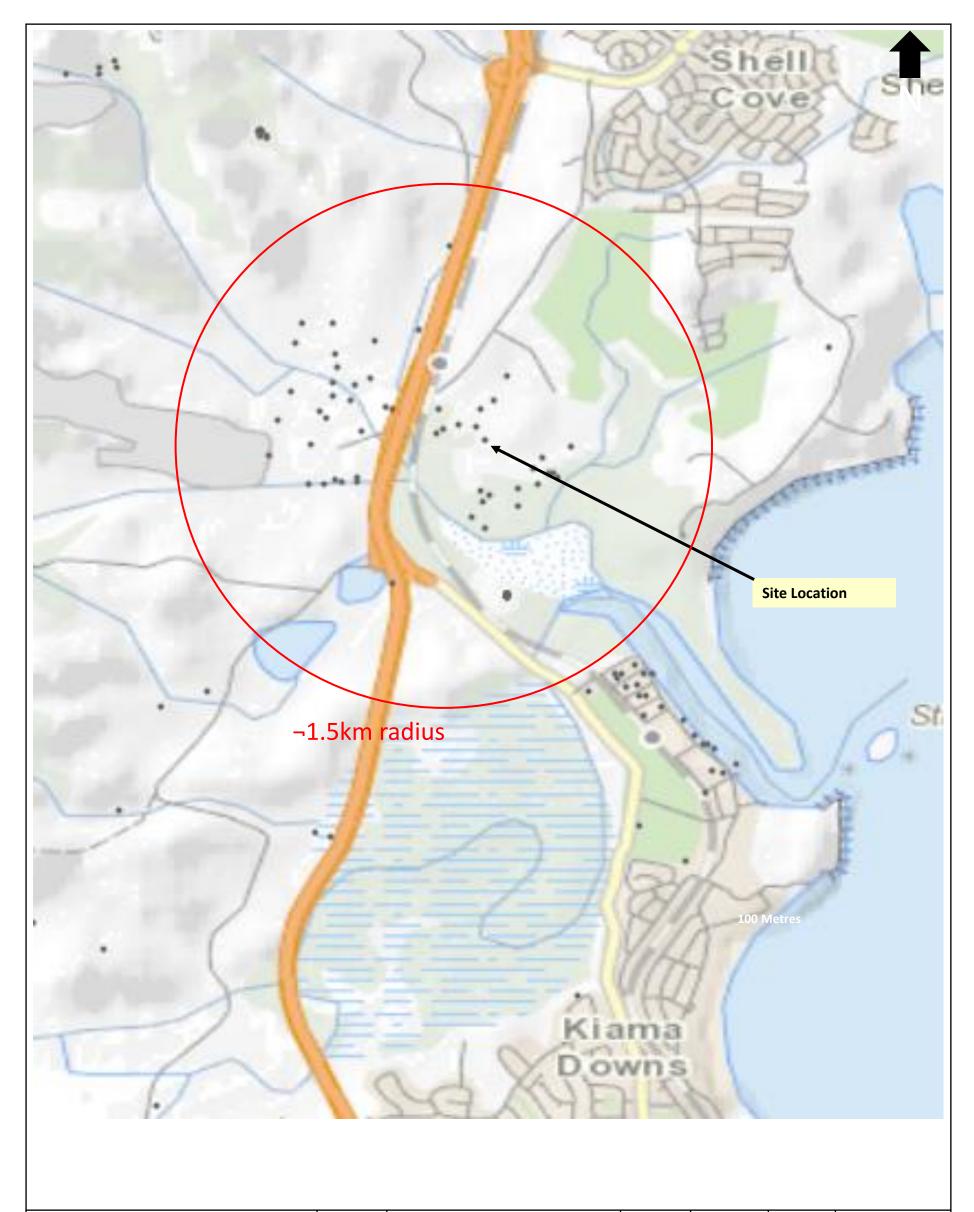
Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.


The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of Site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.


FIGURES



Environment & Natural Resource Solutions
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535
Tel: 02 4448 5490 Fax: 02 90374708
projects@enrs.com.au www.enrs.com.au

Client:	Shellharbour City Council	Drawn:	PL	Figure:	3
Project:	ENRS0033	Source:	SixMaps	Date:	16/03/2020
Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Surface Gas
	44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1]	Sample
					transects

Environment & Natural Resource Solutions
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535
Tel: 02 4448 5490 Fax: 02 90374708
projects@enrs.com.au www.enrs.com.au

Client:	Shellharbour City Council	Drawn:	PL	Figure:	5
Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Registered
	44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1		Bores

TABLES

TABLE 14-1: Total Concentration Results

s -Trigger Values for F	Freshwater (Protection of 9	5% of Species) A			.	.	_		.	1.9	_	_	.	0.9 (pH 8)	_	0.7	_	_	_	_	_	_	-	_	6.5 - 8.5	2200		_	
	Marine Water (Protection o				-	_	-	-	_	-	_	_		0.91 (pH 8)					-	-	-	-	-		-				
		r 95% or Species)		Health	-	-	-	-	-	0.5	-		1.5	0.91 (pn o)	3	50	-	-			-			-	6.5 - 8.5			-	
ralian Drinking Water	r Guidelines (2018)			Aesthetic	250		-	180		0.1	0.3	0.3	1.5	0.5				-	•	250				5	6.5 - 8.5				
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	mnipos	otassium	Nanganose	Total Iron	Dissolved Iron	luoride	Ammonia as N	Nitrite as N	vitrate as N	rotal Organic Carbon	Bicarbonate Alkalinity as CaCO3	rotal Alkalinity as CaCO3	Sulfate as SO4 -	Dissolved Oxygen	Dissolved Oxygen - %	suspended Solids (SS)	Turbidity	E.S - 8.5	Electrical Conductivity Non Compensated)	remperature	Standing Water Level	Comments
				Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mg/L	NTU	pН	μS/cm	°C	mbgl	
			_	Laboratory PQL	1	1	1	1	1	0.001	0.05	0.05	0.1	0.01	0.01	0.01	1	1	1	1	0.01	0.1	5	0.1	0.01	1	0.1	0.01	-
EW2400913001	BH1c	Groundwater	3	Mar 2024	971	123			211	0.12		12.40	0.3	319.00	< 0.01		178	2,700	2,700	< 1					7.20	7,610	25.0	3.10	-
EW2400913002	BH3	Groundwater	5	Mar 2024	153	159			29	0.15		2.01	< 0.1	17.40	0.08	9.65	19	459	459	164					7.30	1,450	18.7	3.20	-
EW2400913003	BH4	Groundwater	6	Mar 2024	77	148			24	0.16		4.25	0.1	4.20	< 0.01	< 0.01	12	388	388	130					7.40	1,030	18.9	4.50	-
EW2400913004	BH9	Groundwater	18	Mar 2024	436	198			84	0.86		0.18	0.5	133.00	0.02	0.46	73	1,920	1,920	< 1					7.30	3,890	18.7	3.16	-
EW2400913005	BH12r	Groundwater	17	Mar 2024	180	196			28	0.53		10.20	0.2	4.28	< 0.01	0.11	24	548	548	138					6.90	1,620	21.4	4.40	-
EW2400913006	BH13	Groundwater	10	Mar 2024	295	198			25	0.51		3.71	0.2	7.13	< 0.01	2.03	38	829	829	48					6.70	2,110	21.9	4.35	-
EW2400913007	BH14	Groundwater	11	Mar 2024	166	198			21	0.23		0.41	0.4	1.44	0.03	5.28	25	610	610	47					6.70	1,500	21.6	4.82	-
EW2400913008	BH15	Groundwater	7	Mar 2024	204	86			103	0.16		4.34	0.2	9.00	0.02	0.05	33	475	475	181					7.10	1,620	19.7	0.73	-
EW2400913009	BH18	Groundwater	25	Mar 2024	37	95			48	0.07		0.49	0.1	2.36	< 0.01	0.02	11	345	345	46					7.60	714	18.9	4.18	-
EW2400913010	BH19r	Groundwater	16	Mar 2024	11	62			9	0.08		1.24	0.2	0.92	< 0.01	< 0.01	11	242	242	< 1					6.70	426	20.9	2.22	-
EW2400913011	BH21	Groundwater	23	Mar 2024	302	125			16	0.46		1.02	0.3	4.08	< 0.01	0.01	35	769	769	155					7.20	2,280	22.4	3.04	-
EW2400913012	BH22	Groundwater	24	Mar 2024	200	116			22	0.13		16.50	0.5	7.12	< 0.01	< 0.01	28	486	486	218					7.30	1,680	19.5	2.41	-
EW2400977001	SWP1	Surfacewater	1	Mar 2024	112	41	22	122	10	0.48	0.39	< 0.05	0.3	0.07	< 0.01	< 0.01	21	289	289	27	3.53		9	4.60	7.40	871	21.9		-
EW2400977003	SWC_up	Surfacewater	20	Mar 2024	8,720	235	621	5,000	194	0.33	0.29	0.10	0.4	0.23	0.02	0.01	10	168	168	1,260	4.20		< 5	2.50	7.20	25,200	19.4		-
EW2400977002	SWC_2	Surfacewater	19	Mar 2024	10,000	264	715	5,770	223	0.26	0.24	0.07	0.7	0.22	0.02	< 0.01	10	168	168	1,450	3.39		< 5	2.50	7.20	28,800	19.7		-
EW2400977004	SWC_down	Surfacewater	21	Mar 2024	10,300	273	694	5,670	217	0.24	0.26	< 0.05	0.5	0.23	0.01	0.01	9	168	168	1,420	5.16		< 5	2.50	7.20	30,000	20.9		-
EW2400977005	SWC_down_2	Surfacewater	22	Mar 2024	11,200	286	781	6,340	244	0.20	0.17	< 0.10	0.4	0.24	0.01	< 0.01	8	161	161	1,540	4.25		< 5	2.10	7.20	33,000	20.6		-
EW2400975001	Leachate Storage Tank LP1	Leachate	2	Mar 2024	744	96			873	0.67	4.20		0.2	1	0.24	8.53	166	765	830	134	3.32	37.6			8.60	3,520	22.4		-

Full SCC DatabaseV11 Q2 2024

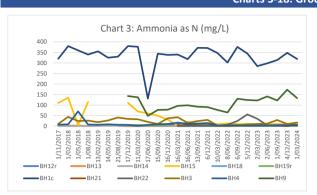
TABLE 14-2: Ammonia Results March 2024 Quarter 2: Dunmore Recycling and Waste Depot

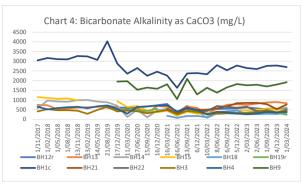
				рН		Assessme	nt Criteria	Result	
Ammonia Resu	ilts comapred ANZAC	against the pH Modified T C (2000) Table 8.3.7		рн (lab)	Ecological Stressor Value	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
Lab Barand Na	1		Concentrations - PQL	0.1	-	-	-	0.01	
Lab Report No. EW2400913001		Sample ID. BH1c	1/03/2024	pH 7.20	mg/L	mg/L 1.99	mg/L 3.20	mg/L 319.00	> TV
EW2400913002		внз	1/03/2024	7.30		1.88	2.84	17.40	> TV
EW2400913003		BH4	1/03/2024	7.40		1.75	2.49	4.20	> TV
EW2400913004		внэ	1/03/2024	7.30		1.88	2.84	133.00	> TV
EW2400913005		BH12r	1/03/2024	6.90		2.26	4.24	4.28	> TV
EW2400913006	Groundwater	BH13	1/03/2024	6.70		2.38	4.83	7.13	> TV
EW2400913007		BH14	1/03/2024	6.70		2.38	4.83	1.44	> TV
EW2400913008		BH15	1/03/2024	7.10		2.09	3.56	9.00	> TV
EW2400913009		BH18	1/03/2024	7.60	0.20	1.61	2.15	2.36	> TV
EW2400913010		BH19r	1/03/2024	6.70		2.38	4.83	0.92	> TV
EW2400913011		BH21	1/03/2024	7.20		1.99	3.20	4.08	> TV
EW2400913012		BH22	1/03/2024	7.30		1.88	2.84	7.12	> TV
EW2400977001	Onsite Dam	SWP1	5/03/2024	7.40		1.75	2.49	0.07	< TV
EW2400977002		SWC_up	5/03/2024	7.20		1.99	3.20	0.23	> TV
EW2400977003	Rocklow Creek	SWC_2	5/03/2024	7.20		1.99	3.20	0.22	> TV
EW2400977004	Surface Water	SWC_down	5/03/2024	7.20		1.99	3.20	0.23	> TV
EW2400977005		SWC_down_2	5/03/2024	7.20		1.99	3.20	0.24	> TV

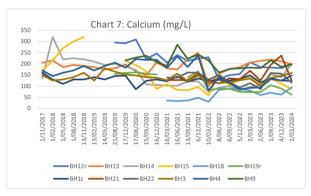
ENRS0033_202312_01 pH Ammonia Table Page 1 of 1

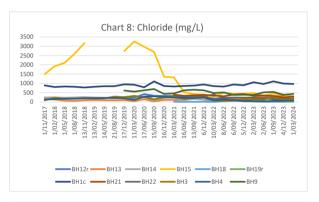
TABLE 14-3: Duplicate Groundwater Sample Results and QC Data

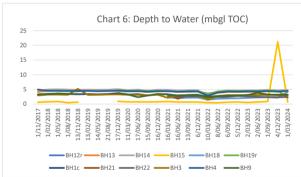
Lab Report No.				EW2400913009	EW2400913013		
Sample No.				BH18	GWDuplicate		
Sample type				Groundwater	GWQC		RPD
EPA No,				25	QC1		KPD
Date Sampled				1/03/2024	1/03/2024		
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	37	10	8	114.89
Calcium	mg/L	1	5	95	62	8	42.04
Potassium	mg/L	1	5	48	9	8	136.84
Manganese	mg/L	0.001	0.005	0.065	0.080	②	20.69
Dissolved Iron	mg/L	0.05	0.25	0.49	1.23	8	86.05
Fluoride	mg/L	0.1	0.5	0.10	0.20	8	66.67
Ammonia as N	mg/L	0.01	0.05	2.36	0.89	8	90.46
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00
Nitrate as N	mg/L	0.01	0.05	0.02	< 0.01	×	66.67
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.02	< 0.01	8	66.67
Total Organic Carbon	mg/L	1	5	11	12	\bigcirc	8.70
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	345	241	8	35.49
Total Alkalinity as CaCO3	mg/L	1	5	345	241	8	35.49
Sulfate as SO4 - Turbidimetric	mg/L	1	5	46	< 1	8	191.49
рН	рН	0.01	0.05	7.60	6.70	②	12.59
Electrical Conductivity (Non Compensated)	μS/cm	1	5	714	427	※	50.31
Temperature	°C	0.1	0.5	18.9	20.9	②	10.05
Standing Water Level	mbgl	-		4.18	2.22	8	61.25

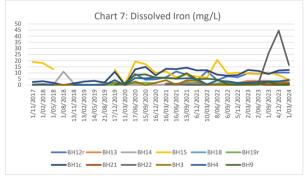

TABLE 14-4: Duplicate Surface Water Results and QC Data

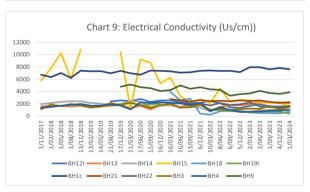

Lab Report No.				EW2400977002	EW2400977006	
Sample No.				SWC_2	SWDuplicate	
Sample type				Surfacewater	OffSiteSWQC	DDD
EPA No,				19	QC2	RPD
Date Sampled				1/03/2024	1/03/2024	
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	10,000	10,400	3.92
Calcium	mg/L	1	5	264	270	2.25
Potassium	mg/L	1	5	223	215	3.65
Manganese	mg/L	0.001	0.005	0.260	0.234	10.53
Total Iron	mg/L	0.05	0.25	0.24	0.27	11.76
Dissolved Iron	mg/L	0.05	0.25	0.07	0.06	15.38
Fluoride	mg/L	0.1	0.5	0.7	0.4	54.55
Ammonia as N	mg/L	0.01	0.05	0.22	0.24	8.70
Nitrite as N	mg/L	0.01	0.05	0.02	0.01	66.67
Nitrate as N	mg/L	0.01	0.05	< 0.01	0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.02	0.02	0 .00
Total Organic Carbon	mg/L	1	5	10	9	10.53
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	168	165	1.80
Total Alkalinity as CaCO3	mg/L	1	5	168	165	1.80
Sulfate as SO4 - Turbidimetric	mg/L	1	5	1,450	1,280	12.45
Dissolved Oxygen	mg/L	0.01	0.05	3.39	3.39	0 .00
рН	рН	0.01	0.05	7.20	7.20	0 .00
Electrical Conductivity (Non Compensated)	μS/cm	1	5	28,800	28,800	0 .00
Temperature	°C	0.1	0.5	19.7	19.7	0.00

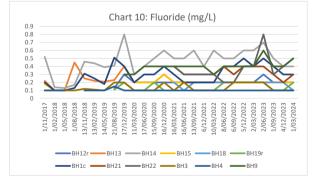


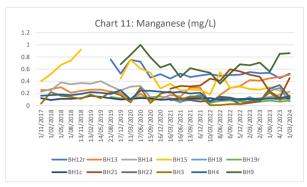

CHARTS

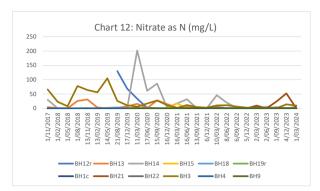

Charts 3-18: Groundwater Charts

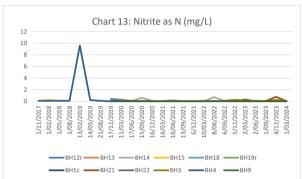


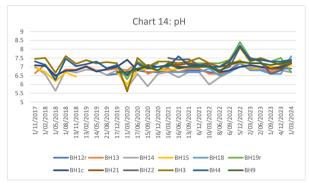


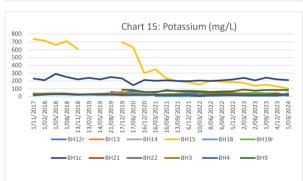


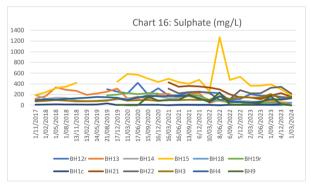


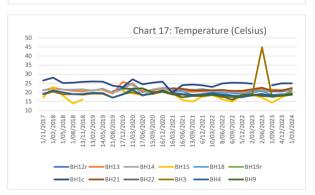


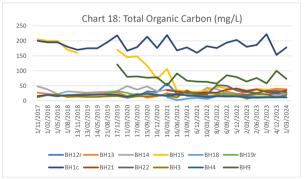


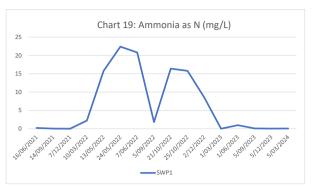


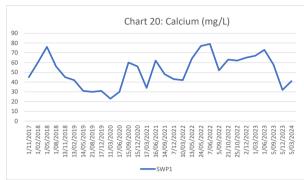


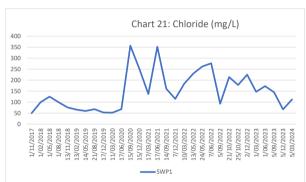


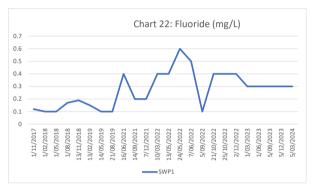


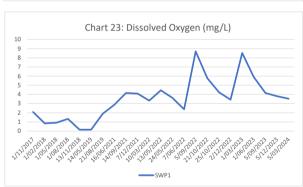


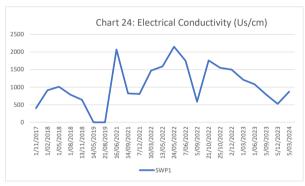


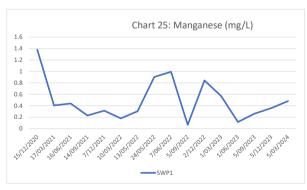


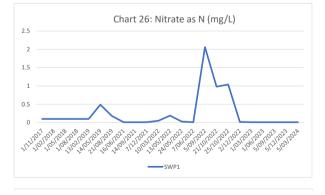


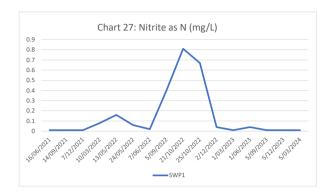


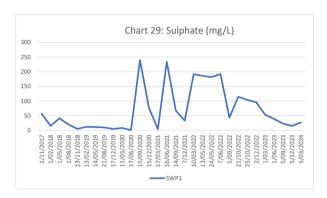

Charts 19-34: Onsite Surface Water Charts

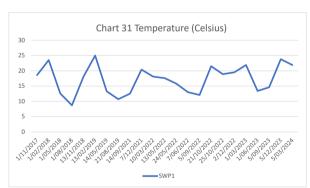


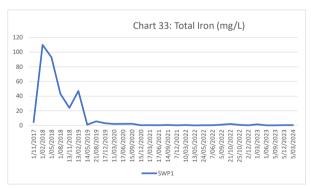


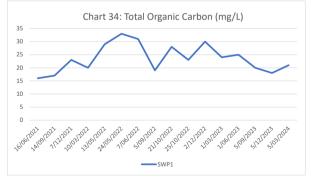


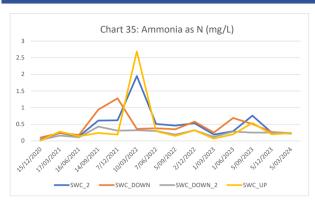


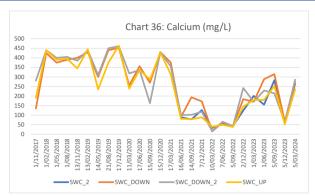


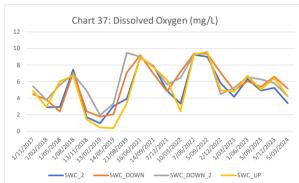


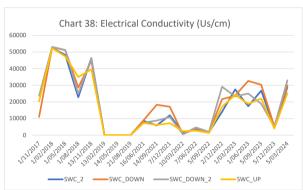


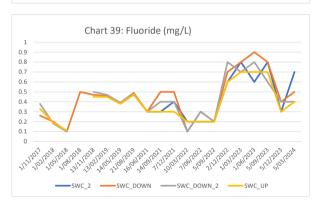


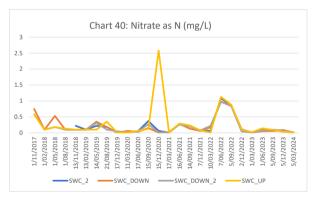


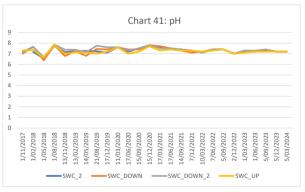


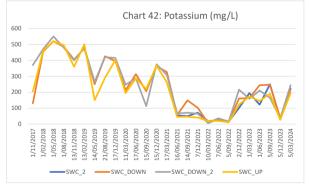


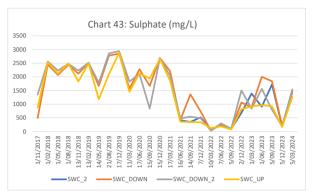


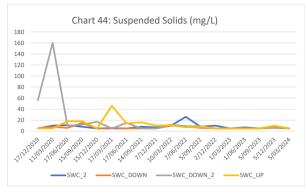

Charts 35-46: Rocklow Creek Surface Water Charts

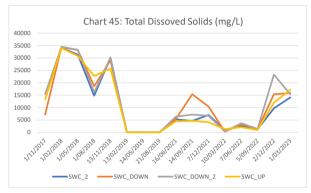


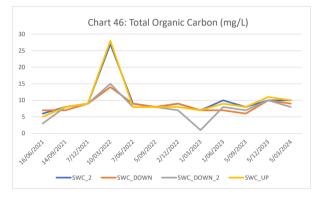


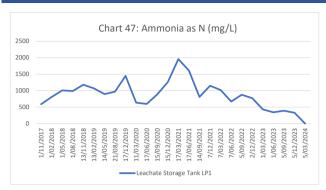


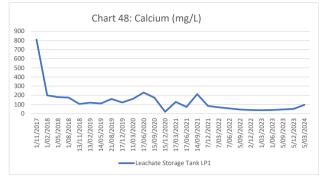


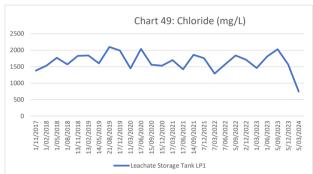


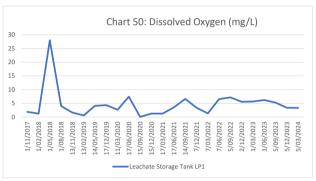


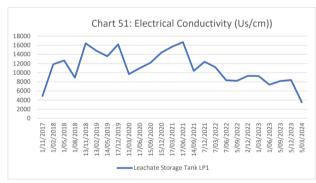


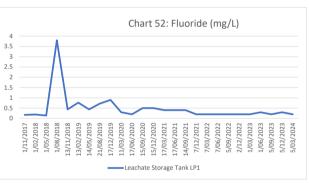


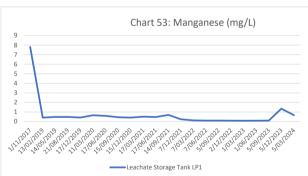


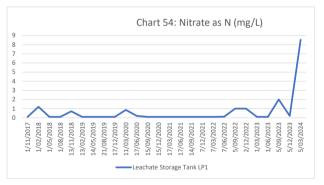


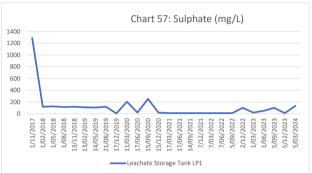


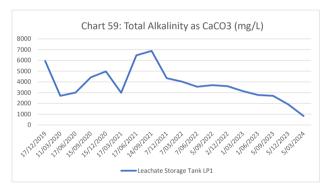

Charts 47-61 Leachate Water Quality Charts

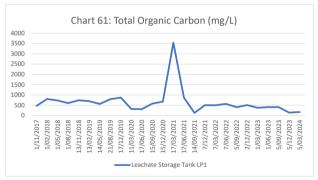




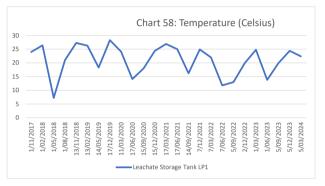


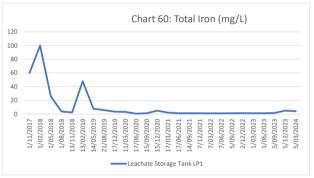












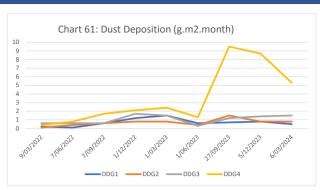


Chart 1 Dust Deposition Chart

APPENDICES

Appendix A:

EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022)

2	Leachate monitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

18	Groundwater monitoring	BH9 - as shown on the drawing
		titled "Shellharbour City Council - Dunmore, NSW - Site Layout -
		Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA
20	Surface Water Monitoring	Ref. no. DOC19/1027702). SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July
		2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
23	Groundwater Monitoring	BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).

Appendix B: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

CLIENT:

OFFICE:

PROJECT:

SAMPLER:

ORDER NUMBER:

PROJECT MANAGER: Ryan Stirling

COC emailed to ALS? (YES / NO)

CHAIN OF CUSTODY

41 Burelli St WOLLONGONG NSW 2500

Dunmore Quarterly Ground Waters EPL

ALS Laboratory: please tick →

Shellharbour City Council

 Newcastle: 5 Rosegum Rd. Waragrook NSW 2304
 D. Townsville: 14-15 Cestris Ct. Boble OLD 4818 Ph 32 4866 5436 E samples newcastiscipalservare com Ph 32 4866 5436 E townsville engreum englichsterving com

SAMPLER MOBILE:

EDD FORMAT (or default):

WO/030/19 TENDER

RELINQUISHED BY

TURNAROUND REQUIREMENTS : Standard TAT (List due date):

Standard TAT may be longer for some tests

e.g., Ultra Trace Organics)

ALS QUOTE NO .:

Phr U8 8355 0800 E.adelaids/2a senvira cont

☐ Non Standard or urgent TAT (List due date):

Melbourne, 2-4 Westall Rd. Springsele VIC 3171 Ph/03 8549 9600 F, namoles methodopadt-quantity tom El Adelaider 2-1 Burma Rd Postaka SA 6096

COC:

RECEIVED BY:

COC SEQUENCE NUMBER (Circle)

C Perth 10 Hoc Way, Maraga WA 6090 Ph. Ca 9209 7665 E. camples perthigasenvira anni

C. Launceston: 27 Wellington St. Leunc Ph. 03 6301 2156 E laur gestoni@glsen

FOR LABORATORY USE

ree ice / frozen ice bricks

ustody Seal Intact?

RELINQUISHED BY:

Environmental Division Wollongong Work Order Reference EW2400913

il Reports to :		*		DATE/TIM	3.20	1	1	TIME:	. 20	(DATE/TIME:	•	
	HANDLING/STORAGE OR DISPOSA	L: CC reports to:			<u>ي. حدر</u>	<u> </u>		<u>د ۱</u>		(•	.l <u></u>		Telephone : 02 42253125
LS USE ONLY		E DETAILS lid(S) Water(W)		CONTAINER INFORMATION	4		SIS REQUIRI		Additional Information				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	тос	Dissolved Fe & Mn	NT-4 (NO2, NO3)	Send to Eurofins	w.	Comments on likely contaminant levels, dill or samples requiring specific QC analysis e
	вніс	1.324 10:-3	w			1	1	✓	1	1			Field Tests - pH, EC, Temp & \$
	внз	12:5				✓	1	✓	1	1			Field Tests - pH, EC, Temp & S
	вн4	13:30				1	1	✓	1	1			Field Tests - pH, EC, Temp & S
	ВН9	9:37	w		,	✓	1	1	✓	1			Field Tests - pH, EC, Temp & S
	BH12R	11:40	w			1	1	✓	. 1	1			Field Tests - pH, EC, Temp &
	BH13	12:00	w		-	✓	1	1	1	1			Field Tests - pH, EC, Temp &
	BH14	12:25	w			✓	1	1	1	1			Field Tests - pH, EC, Temp &
	BH15	11:16	w			✓	. 🗸	1	1	1			Field Tests - pH, EC, Temp &
	BH19R	13:10	W.			✓	✓	4	✓	1			Field Tests - pH, EC, Temp &
	BH18	8:55				1	1	✓	✓	1			Field Tests - pH, EC, Temp &
	BH21	10:52				✓	1	. 4	1	1			Field Tests - pH, EC, Temp &
	BH22	10:2-				✓	1	1	1	1			Field Tests - pH, EC, Temp &
	Duplicate	8:55	w			✓	✓	1	1	1			Field Tests - pH, EC, Temp &
	Triplicate	8/5	w								1		
											 		1
				tor	10								

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; NS = VOA Vial Sulfuric Preserved; VS = VOA Vial Sulfuric Preserved; VS = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Rastic; HS = VOA Vial Sulfuric Preserved Plastic; HS = VOA Vial Sulfuric Preserved Plastic Pre Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL

Contact : Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone : --

Project : Dunmore Quarterly Groundwaters EPL

Order number : 156810

C-O-C number : ----

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER GROUNDWATERS CPI 2024

No. of samples received : 14

No. of samples analysed : 13

Page : 1 of 8

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 01-Mar-2024 15:03

Date Analysis Commenced : 01-Mar-2024

Issue Date : 18-Mar-2024 10:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Applit Jackin Chamiet Increasing Structure Chamiet Increas

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW

Page : 2 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via Bailer & High Flow Method.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page : 3 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	ВН3	BH4	ВН9	BH12R
		Sampli	ing date / time	01-Mar-2024 10:03	01-Mar-2024 12:50	01-Mar-2024 13:30	01-Mar-2024 09:37	01-Mar-2024 11:40
Compound	CAS Number	LOR	Unit	EW2400913-001	EW2400913-002	EW2400913-003	EW2400913-004	EW2400913-005
				Result	Result	Result	Result	Result
EA005FD: Field pH		4						
pH		0.1	pH Unit	7.2	7.3	7.4	7.3	6.9
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	μS/cm	7610	1450	1030	3890	1620
Compensated)								
EA116: Temperature		0.5	**		10-	10.0	40 =	24.1
Temperature		0.5	°C	25.0	18.7	18.9	18.7	21.4
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2700	459	388	1920	548
Total Alkalinity as CaCO3		1	mg/L	2700	459	388	1920	548
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	164	130	<1	138
ED045G: Chloride by Discrete Analyse	er							
Chloride	16887-00-6	1	mg/L	971	153	77	436	180
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	123	159	148	198	196
Potassium	7440-09-7	1	mg/L	211	29	24	84	28
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.118	0.151	0.156	0.863	0.527
Iron	7439-89-6	0.05	mg/L	12.4	2.01	4.25	0.18	10.2
EK040P: Fluoride by PC Titrator		11						
Fluoride	16984-48-8	0.1	mg/L	0.3	<0.1	0.1	0.5	0.2
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	319	17.4	4.20	133	4.28
EK057G: Nitrite as N by Discrete Anal	lyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.08	<0.01	0.02	<0.01
EK058G: Nitrate as N by Discrete Ana	llvser							

Page : 4 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	вн1С	внз	BH4	ВН9	BH12R
		Sampli	ng date / time	01-Mar-2024 10:03	01-Mar-2024 12:50	01-Mar-2024 13:30	01-Mar-2024 09:37	01-Mar-2024 11:40
Compound	CAS Number	LOR	Unit	EW2400913-001	EW2400913-002	EW2400913-003	EW2400913-004	EW2400913-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete Analy	ser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	9.65	<0.01	0.46	0.11
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	9.73	<0.01	0.48	0.11
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	178	19	12	73	24
QWI-EN 67.11 Sampling of Groundwater	s							
Standing Water Level		0.01	m AHD	3.10	3.20	4.50	3.16	4.40

Page : 5 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	01-Mar-2024 12:00	01-Mar-2024 12:25	01-Mar-2024 11:16	01-Mar-2024 13:10	01-Mar-2024 08:55
Compound	CAS Number	LOR	Unit	EW2400913-006	EW2400913-007	EW2400913-008	EW2400913-009	EW2400913-010
				Result	Result	Result	Result	Result
EA005FD: Field pH		4						
pH		0.1	pH Unit	6.7	6.7	7.1	7.6	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	2110	1500	1620	714	426
EA116: Temperature								
Temperature		0.5	°C	21.9	21.6	19.7	18.9	20.9
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	829	610	475	345	242
Total Alkalinity as CaCO3		1	mg/L	829	610	475	345	242
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	48	47	181	46	<1
ED045G: Chloride by Discrete Analyser	1 11 11	4						
Chloride	16887-00-6	1	mg/L	295	166	204	37	11
ED093F: Dissolved Major Cations	1 11 11	-1						
Calcium	7440-70-2	1	mg/L	198	198	86	95	62
Potassium	7440-09-7	1	mg/L	25	21	103	48	9
EG020F: Dissolved Metals by ICP-MS	1 11 11							
Manganese	7439-96-5	0.001	mg/L	0.507	0.229	0.164	0.065	0.081
Iron	7439-89-6	0.05	mg/L	3.71	0.41	4.34	0.49	1.24
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	7.13	1.44	9.00	2.36	0.92
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.03	0.02	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	ser							

Page : 6 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	01-Mar-2024 12:00	01-Mar-2024 12:25	01-Mar-2024 11:16	01-Mar-2024 13:10	01-Mar-2024 08:55
Compound	CAS Number	LOR	Unit	EW2400913-006	EW2400913-007	EW2400913-008	EW2400913-009	EW2400913-010
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete Analy	ser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	2.03	5.28	0.05	0.02	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	2.03	5.31	0.07	0.02	<0.01
EP005: Total Organic Carbon (TOC)		-1						
Total Organic Carbon		1	mg/L	38	25	33	11	11
QWI-EN 67.11 Sampling of Groundwater	'S							
Standing Water Level		0.01	m AHD	4.35	4.82	0.73	4.18	2.22

Page : 7 of 8
Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)		Sample ID	BH21	BH22	Duplicate	 	
,	Sampl	ing date / time	01-Mar-2024 10:52	01-Mar-2024 10:27	01-Mar-2024 08:55	 	
Compound	CAS Number	LOR	Unit	EW2400913-011	EW2400913-012	EW2400913-013	
				Result	Result	Result	
EA005FD: Field pH				1 1 1			
pH		0.1	pH Unit	7.2	7.3	6.7	
EA010FD: Field Conductivity							
Electrical Conductivity (Non		1	μS/cm	2280	1680	427	
Compensated)							
EA116: Temperature						_	
Temperature		0.5	°C	22.4	19.5	20.9	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	769	486	241	
Total Alkalinity as CaCO3		1	mg/L	769	486	241	
ED041G: Sulfate (Turbidimetric) as SO	04 2- by DA	1					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	155	218	<1	
ED045G: Chloride by Discrete Analyse	er	4					
Chloride	16887-00-6	1	mg/L	302	200	10	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	125	116	62	
Potassium	7440-09-7	1	mg/L	16	22	9	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.455	0.132	0.080	
Iron	7439-89-6	0.05	mg/L	1.02	16.5	1.23	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.5	0.2	
EK055G: Ammonia as N by Discrete A	nalyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.08	7.12	0.89	
EK057G: Nitrite as N by Discrete Anal	lyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Ana	ılyser						

Page : 8 of 8 Work Order : EW2400913

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate		
		Sampli	ng date / time	01-Mar-2024 10:52	01-Mar-2024 10:27	01-Mar-2024 08:55		
Compound	CAS Number	LOR	Unit	EW2400913-011	EW2400913-012	EW2400913-013		
				Result	Result	Result		
EK058G: Nitrate as N by Discrete Analy	ser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	0.01	<0.01	<0.01		
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	llyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	<0.01		
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	35	28	12		
QWI-EN 67.11 Sampling of Groundwater	s							
Standing Water Level		0.01	m AHD	3.04	2.41	2.22		

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser (WATER) ED037P: Alkalinity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) ED093F: Dissolved Major Cations (WATER) EP005: Total Organic Carbon (TOC)

CERTIFICATE OF ANALYSIS

Work Order : EW2400974

Client : SHELLHARBOUR CITY COUNCIL

Contact : Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone

Project : Dunmore Quarterly Leachate

Order number : 156810

C-O-C number

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER LEACHATE CPI 2024

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 4

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 05-Mar-2024 15:09

Date Analysis Commenced : 05-Mar-2024

Issue Date · 12-Mar-2024 14:07

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Aneta Prosaroski **Environmental Services Representative** Laboratory - Wollongong, NSW Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Page : 2 of 4 Work Order : EW2400974

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

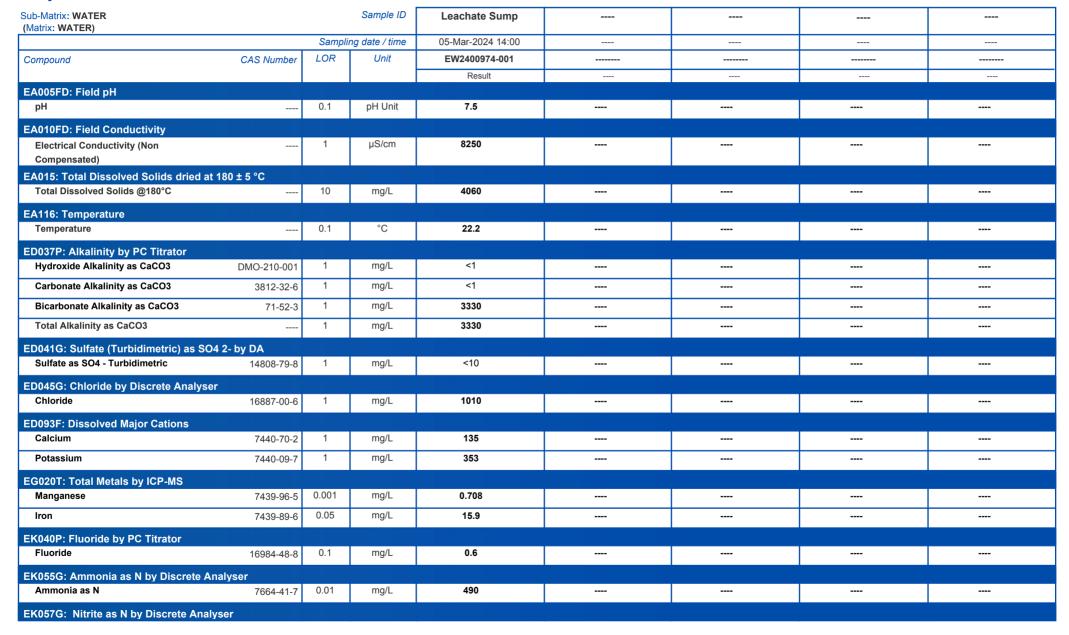
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

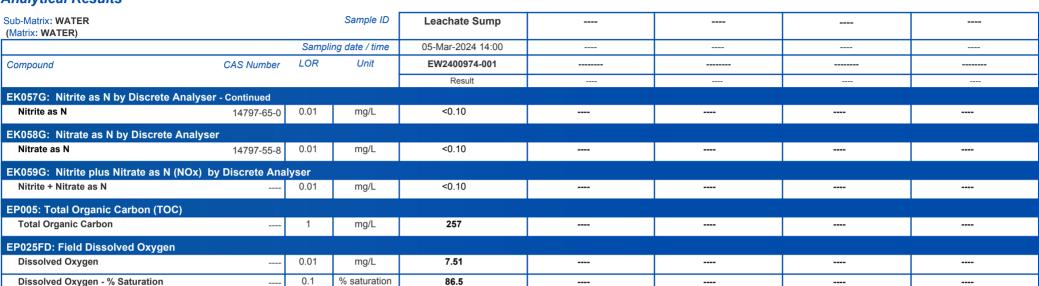
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for NOx on sample no.1 due to sample matrix.
- EK057G: LOR raised for Nitrite due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page : 3 of 4 Work Order : EW2400974

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate



Page : 4 of 4 Work Order : EW2400974

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

Analytical Results

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations (WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser (WATER) ED037P: Alkalinity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Contact

CERTIFICATE OF ANALYSIS

Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL

: Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone

Project : Dunmore Quarterly Surface Water EPL

Order number : 156810

C-O-C number

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number · WO/030/19 TENDER SURFACE WATER CPI 2024

No. of samples received : 6 No. of samples analysed : 6 Page : 1 of 7

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 05-Mar-2024 15:12

Date Analysis Commenced : 05-Mar-2024

Issue Date · 12-Mar-2024 15:36

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Aneta Prosaroski **Environmental Services Representative** Laboratory - Wollongong, NSW Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Page : 2 of 7

Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page : 3 of 7
Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER (Matrix: WATER)	Sample ID Sampling date / time		Sample ID	SWP1 Point 1 05-Mar-2024 12:45	SWC_2 Point 19 05-Mar-2024 10:00	SWC_UP Point 20 05-Mar-2024 10:20	SWC_Down Point 21 05-Mar-2024 10:40	SWC_DOWN_2 Point 22 05-Mar-2024 10:50
Compound	CAS Number	LOR	Unit	EW2400977-001	EW2400977-002	EW2400977-003	EW2400977-004	EW2400977-005
Compound	CAS Number	2071	O m	Result	Result	Result	Result	Result
EA005FD: Field pH	1111			roodit	rtodak	rtodak	rtodati	rtodak
рН		0.1	pH Unit	7.4	7.2	7.2	7.2	7.2
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	871	28800	25200	30000	33000
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C	8						
Total Dissolved Solids @180°C		10	mg/L		27400	23300	28400	30700
EA025: Total Suspended Solids dried at Suspended Solids (SS)	104 ± 2°C	5	mg/L	9	<5	<5	<5	<5
,			o a					
EA045: Turbidity Turbidity		0.1	NTU	4.6	2.5	2.5	2.5	2.1
EA116: Temperature	200	To the second						
Temperature		0.5	°C	21.9	19.7	19.4	20.9	20.6
ED037P: Alkalinity by PC Titrator		12						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	289	168	168	168	161
Total Alkalinity as CaCO3		1	mg/L	289	168	168	168	161
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA	11						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	27	1450	1260	1420	1540
ED045G: Chloride by Discrete Analyser	1 1							
Chloride	16887-00-6	1	mg/L	112	10000	8720	10300	11200
ED093F: Dissolved Major Cations		8						
Calcium	7440-70-2	1	mg/L	41	264	235	273	286
Magnesium	7439-95-4	1	mg/L	22	715	621	694	781
Sodium	7440-23-5	1	mg/L	122	5770	5000	5670	6340
Potassium	7440-09-7	1	mg/L	10	223	194	217	244
EG020F: Dissolved Metals by ICP-MS		10						
Iron	7439-89-6	0.05	mg/L	<0.05	0.07	0.10	<0.05	<0.10

Page : 4 of 7
Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID	SWP1 Point 1 05-Mar-2024 12:45	SWC_2 Point 19 05-Mar-2024 10:00	SWC_UP Point 20 05-Mar-2024 10:20	SWC_Down Point 21 05-Mar-2024 10:40	SWC_DOWN_2 Point 22 05-Mar-2024 10:50
Compound	CAS Number	LOR	Unit	EW2400977-001	EW2400977-002	EW2400977-003	EW2400977-004	EW2400977-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.482	0.260	0.329	0.241	0.199
Iron	7439-89-6	0.05	mg/L	0.39	0.24	0.29	0.26	0.17
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	0.7	0.4	0.5	0.4
EK055G: Ammonia as N by Discr	ete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.22	0.23	0.23	0.24
EK055G-NH4: Ammonium as N b	y DA							
Ammonium as N	14798-03-9_N	0.01	mg/L	0.07	0.22	0.23	0.23	0.24
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.02	0.02	0.01	0.01
EK058G: Nitrate as N by Discrete	e Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.01	0.01	<0.01
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.02	0.03	0.02	0.01
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	9.50	316	276	323	351
ø Total Cations		0.01	meq/L	9.42	329	285	323	360
ø Ionic Balance		0.01	%	0.40	2.03	1.73	0.08	1.31
EP005: Total Organic Carbon (TC	OC)							
Total Organic Carbon		1	mg/L	21	10	10	9	8
EP025FD: Field Dissolved Oxyge	n <u> </u>	i i						
Dissolved Oxygen		0.01	mg/L	3.53	3.39	4.20	5.16	4.25

Page : 5 of 7
Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
(Madrice With Life)		Sampli	ng date / time	05-Mar-2024 10:00	 	
Compound	CAS Number	LOR	Unit	EW2400977-006	 	
				Result	 	
EA005FD: Field pH		14				
рН		0.1	pH Unit	7.2	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	28800	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	27300	 	
EA025: Total Suspended Solids dried a	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	2.4	 	
EA116: Temperature						
Temperature		0.5	°C	19.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	165	 	
Total Alkalinity as CaCO3		1	mg/L	165	 	
ED041G: Sulfate (Turbidimetric) as SO4	1 2- by DA	14		1 1		
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1280	 	
ED045G: Chloride by Discrete Analyser	• 1 11 11					
Chloride	16887-00-6	1	mg/L	10400	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	270	 	
Magnesium	7439-95-4	1	mg/L	689	 	
Sodium	7440-23-5	1	mg/L	5660	 	
Potassium	7440-09-7	1	mg/L	215	 	
EG020F: Dissolved Metals by ICP-MS		14				
Iron	7439-89-6	0.05	mg/L	0.06	 	
-						

Page : 6 of 7
Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER			Sample ID	Duplicate	 	
(Matrix: WATER)						
			ng date / time	05-Mar-2024 10:00	 	
Compound	CAS Number	LOR	Unit	EW2400977-006	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.234	 	
Iron	7439-89-6	0.05	mg/L	0.27	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.4	 	
EK055G: Ammonia as N by Discret	e Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.24	 	
EK055G-NH4: Ammonium as N by	DA					
Ammonium as N	14798-03-9_N	0.01	mg/L	0.24	 	
EK057G: Nitrite as N by Discrete A	nalyser					
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete	Analyser	3				
Nitrate as N	14797-55-8	0.01	mg/L	0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.02	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	323	 	
ø Total Cations		0.01	meq/L	322	 	
ø Ionic Balance		0.01	%	0.22	 	
EP005: Total Organic Carbon (TOC)					
Total Organic Carbon		1	mg/L	9	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	3.39	 	

Page : 7 of 7
Work Order : EW2400977

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EK055G-NH4: Ammonium as N by DA

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Appendix C: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CHAIN OF CUSTODY

ALS Laboratory: please tick →

Ph 02 8784 8565 Eisamples sydney@alsenviro.com

D Newcastle: 5 Rosedum Rd. Warabrook NSW 2304 C Townsville: 14-15 Desma Ct. Bohla OLD 4618

CJ Sydney, 277 Woodgark Rd, Smithfield NSW 2176 C Brisbane: 32 Shand St, Statford QLD 4053 Ph:07 3243 7222 E samples brisbane@elsenviro.com

Ph/92 4968 9433 E vanibles newcastle@alsenviro.com Ph/97 4796 0600 E townsvills environmental@disenviro.com Ph/08 3559 0890 E adelaide@alsenviro.com

Cl. Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 8549 9600 E. samples melbourne@alsenviro.com

☐ Adelaide: 2-1 Burma Rd. Pooraka SA 5095

CI Porth: 10 Hod Wey, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com ☐ Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E. launceston@elsenviro.com

CLIENT.	Shallbarbarry City Carmail			TUDNASS	NIND DECUIDEMENTS T							5 8 2 1 4 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e para la suescenza de companya de la comp		, page
CLIENT:	Shellharbour City Council				ROUND REQUIREMENTS: Standard TAT (List due date): TAT may be longer for some tests Inage Ornanics Non Standard or urgent TAT (List due date):								SORATORY USE		/-
OFFICE: PROJECT:	Dunmore Dust		ě	e.g Ultra Tra	ace Organics) LI Non S TE NO.: WO/030/19 TENDER	Standard or ur	gent TAT (List		C SEQUENC	E MUMBE	D (Olas)-1	Custody Se	sei Intact? rozen Ice bricks pres	Yes emupon	N° (NA)
ORDER NUMBER:	Duminore Dust			ALS QUO	TE NO.: WO/030/19 TENDER			coc: 1	7						
PROJECT MANAGER:	Rvan Stirling •	*						OF: 1	+	. 4	5 6 5 6	7 Random S 7 Other com	ample Temperature	и кесефт.	
SAMPLER: Micho	1 0 1	SAN	IPLER MC	BILE: 04	403 590899 RELINQU	SHED BY:		RECEIVED	<u> </u>	•	J 0	RELINQUISHE		RECEIVED B	v .
COC emailed to ALS?				(or defau	Ith:		.	Δ.				INCELIA GOIOTTE	<i>.</i>	RECEIVED	'''
Email Reports to :				111	DATE/TIM	cel Sar	√ 93	DATE/TIM	etc 1E:	·		DATE/TIME:		DATE/TIME:	
Email Invoice to :					04.03.	24	11:15		124	. 11	30				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC re	ports to:												
ALSUSEONLY		E DETAILS olid(S) Water(W)			CONTAINER INFORMATION	j						les must be listed to	o attract suite price)	Additional	Information
												10.		Comments on likely co dilutions, or samples re analysis etc.	ntaminant levels, equiring specific QC
LAB ID	SAMPLE ID	DATE / TIM	IE	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	CM, TIS)				-				
					(Leter to codes below)	BOTTLES	(Ash,								
							A04				_				
	DDG1	04.93.24	9:09	AIR			4								
. 2	DDG2		9:30	AIR			✓								
3	DDG3		8:57	AIR			1								
Ч	DDG4	V	8:45	AIR			4					Enviro	nmental Di	ivision	
			<u> </u>		**************************************							- Wollor	ngong k Order Refer W240 (ence	
	· · · · · · · · · · · · · · · · · · ·	-										⊢ Έ\	N2400)973 📑	

														Te (5) (()	
														}	
					A Parameter									53. 11	
					140					.					<u></u>
												Telephor	ne : 02 42253125		
															9
e constitue					TOTAL	10									
Water Container Codes: F	= Unpreserved Plastic; N = Nitric Preserve	ed Plastic; ORC = Nitric	Preserved 0	ORC; SH = S	Sodium Hydroxide/Cd Preserved; S = Sodium H	ydroxide Prese	rved Plastic; AG	= Amber Glass U	Jnpreserved;	; AP - Airfre	eight Unpres	erved Plastic	· · · · · · · · · · · · · · · · · ·	<u> </u>	

V = VOA Vial HCI Preserved; VB = VOA Vial Sulfuric Preserved; VB = VOA Vial Sulfuric Preserved; VS = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order : EW2400973

Client : SHELLHARBOUR CITY COUNCIL

Contact : Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone

Project : Dunmore Landfill Dust

Order number : 156810

C-O-C number

Sampler : Michael Santos

Site : DUNMORE LANDFILL TENDER Quote number · WO/030/19 TENDER DUST

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 3

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 04-Mar-2024 12:22

Date Analysis Commenced : 06-Mar-2024

Issue Date : 13-Mar-2024 15:52

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Thomas Regan Laboratory Technician Newcastle - Inorganics, Mayfield West, NSW Page : 2 of 3 Work Order : EW2400973

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Newcastle.
- Dust analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in deposition units e.g., g/m².mth where the sampling procedure is not NATA accredited. ALS Mudgee laboratory is NATA accredited for dust sampling, therefore ALS Mudgee reported deposition units are accredited.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST			Sample ID	DDG1	1 DDG2 DDG3		DDG4	
(Matrix: AIR)				01/02/2024 -	01/02/2024 -	01/02/2024 -	01/02/2024 -	
				04/03/2024	04/03/2024	04/03/2024	04/03/2024	
		Sampli	ng date / time	04-Mar-2024 09:09	04-Mar-2024 09:30	04-Mar-2024 08:57	04-Mar-2024 08:45	
Compound	CAS Number	LOR	Unit	EW2400973-001	EW2400973-002	EW2400973-003	EW2400973-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.4	0.5	1.0	3.2	
Ash Content (mg)		2	mg	7	10	23	62	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	0.3	0.5	2.1	
Combustible Matter (mg)		2	mg	3	7	11	40	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.5	0.8	1.5	5.3	
Total Insoluble Matter (mg)		2	mg	10	17	34	102	

Page : 3 of 3 Work Order : EW2400973

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix D: Surface Gas (Methane) Field Sheets

	Mandatory Fields	ndatory Fields CHAIN OF CUSTODY										_ `							
CLIENT C	ODE: SHECIT	*PROJECT MANAGER:	Ryan	Stirling			SA	AMPLER:			AMPL	ED BY	ALS	· .	⊢ Pa	age _	of		
*CLI	ENT: Shellharbour City Council	*PM MOBILE:						AMPLER MOBILE:			02 42	25 31:	25		+	CoC #: (i	if applicable)	A	
OF (Invoiced C	FICE: Shellharbour	ALS QUOTE # (Client PL if blank)	WO/030/	19 TENDER	*		PÜ	RCHASE DER NO.:			15	6810	·		+			ALS	y
PRO NO./PROJ	JECT Dunmore Quarterly Surface Methar	ne Testing						SITE:	_,		Dui	nmore			\dashv				
*INVOICI (client defaul										11 1	1.5			C Invoice t	:0		BIOSEC	IRITY	
REPORTS (default to	MAIL Ryan.stirlingshellharbour.n 5 TO: Mitchell.copassh blank)	sw.gov.au, Glenn.h ellharbour.nsw.gov	oldenshellharbour.nsw. .au, lab@enrs.com.au	gov.au,		(N)	B. ALS Que	ote No. and/o	r Analysis Su	LYSIS REC	t ha listari to	affract suite	e/quoted price	PM)		ntry of C	Drigin:		
Standard S	AGE REQUIREMENTS Standard S Please check box.	torage (Not all tests contact Client infor	IAROUND	(+30%)										in that sample		Wolld Wo E	ronmental ongong ork Order Re W24(1405	;
ALS Use Only Lab ID	Sample D	Depth	Date/Time	No. Bottles MATRIX: Sail/Solid(S) Wate	(SD), Dust (D), Pro Biosolid (BS)										(add	OC itional es req.)	(Comment on ha	ional Information izards - e.g., asbes n contamination)	
1	Mathane		21/3/24.		Х														
																		-	
	·																		
														_			, .		
											-						<u> </u>		
					1		:				+-		+					<u> </u>	
											-								
Receipt Detail (Lab Use ONLY)	Chilling Ice: Ice Bricks: Method: Frozen / Melted Frozen / Thawed	None Sample Temp at Receipt	51R =	°C Security	t Yes	. / No	/ (IA(N	None) [Carrier Details Con Note #		Courier			Client	Packagii (Circle) Count	ng:	Hard Esky		x/Bag/Other
Relinquished by	Michael		Date/ Time:	21/3/2	<u> </u>	Received	d by:	An			<i>F</i> -1 (Signature	· (X	hO			Date/ Time:	<u> </u>	4
Relinquished by	: Signa	ture:	Date/ Time:			Received	d by:		<u></u>		_	Signature	,				Date/ Time:		

			ALS Landfi	ill Emissions Re	port	ALS
Client: Site:	Shellharbour City C Dunmore	Council		Date: Sampler(s)	21/03/2024 Robert DaLio, Michael Santos	
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments	
А					No Safe Access	
B	1	6168 218	302 433	3.2		
B	2	6168 250 6168 269	302 437 302 438	3.5		
В	4	6168 290	302 438	3.4		
			Ti .			
c	1	6168 436 6168 392	302 375 302 382	3.5		
C	3	6168 320	302 405	6.3		
C	4	6167 256	302 414	3.5		
c	6	6167 200 6168 145	302 420 302 423	4.6 3.5		
С	7	6168 073	302 405	3.4		
С	8	6168 065	302 400	3.5		
D	1	6168 155	302 398	3.5		
D	2	6168 162	302 400	3.6		
D	3	6168 176 6168 154	302 400 302 390	3.2		
D	5	6168 164	302 388	3.1		
D	6	6168 169 6168 180	302 389 302 389	3.2		
D	8	6168 189	302 382	3.4		
D	7	6168 200	302 380	3.3		
E	1	6168	302		Overgrown	
E	2	6168	302		Overgrown	
E	3	6168 139 6168 144	302 376 302 372	3.5 4.9		
E	5	6168 150	302 372	3.9		
E	6	6168 158	302 373	3.5		
E	7 8	6168 166 6168 157	302 373 302 366	3.4		
			I			
F	1	6168 142 6168 148	302 304 302 348	3.5		
F	3	6168 150	302 330	3.9		
F	4	6168 153	302 337	4.8		
F	5	6168 160 6168 167	302 332 302 332	3.7		
G G	1	6168 403 6168 408	302 251 302 266	4.1		
G	3	6168 422	302 285	4.5		
G	4	6168 462	302 354	4.1		
н	1	6168 348	302 558	3.4		
Н	2	6168 321	302 245	3.5		
н	3	6168 289 6168 250	302 540 302 536	3.6		
н	5	6168 222	302 556	3.6		
н	6	6168 185 6168 144	302 573 301 595	3.7 4.3		
н	8	6168 123	301 610	5.0		
Н	9	6168 099	302 631	5.2		
H	10	6168 070 6167 077	302 607 302 580	3.2 13.2		
н	12	6167 120	302 554	3.3		
Н н	13	6167 162 6167 049	302 530 302 89	3.2		
н	15	6167 005	302 132	3.2		
н	16 17	6167 972 6167 944	302 159 302 175	3.4		
H	17	6167 944	302 175 302 207	3.3		
Н	19		302 250	3.3		
н	20		302 312 302 380	3.3		
Н	22	6167 890	302 420	3.7		
н	23 24		302 490 302 499	3.7		
н	24 25	6168 013 6168 090	302 499 302 510	3.9		
н	26	6168 151	302 518	3.8		
н	27 28	6168 198 6168 250	302 520 302 520	4.3 5.0		
н	29	6168 280	302 530	4.2		
н	30	6168 339	302 533	3.6		
н	31	6168 446 6168 490	302 507 302 300	3.8		
Н	33	6168 482	302 300	3.5		
н	34	6168 468	302 302	3.8		

I	1	6168 180	302 240	8.3	
I	2	6168 172	302 210	7.6	
I	3	6168 160	302 155	4.0	
I	4	6168 149	302 89	3.2	
J	1	6168 322	302 212	5.7	
J	2	6168 292	302 217	4.6	
J	3	6168 255	302 228	5.8	
J	4	6167 236	302 238	5.3	
J	5	6167 212	302 240	5.9	
к	1	6168 525	302 389	3.5	
к	2	6168 543	302 456	3.3	
к	3	6168 579	302 460	3.3	
к	4	6168 591	302 411	3.5	
к	5	6168 565	302 374	3.4	
			•		
L	1	6168 758	302 340	3.5	
L	2	6168 721	302 310	3.6	
L	3	6168 701	302 300	3.6	
L	4	6168 682	302 285	3.5	
L	5	6168 662	302 265	3.5	
L	6	6168 590	302 239	3.5	
compressor Shed	1			3.6	
ffice	1			3.8	
ommunity Recycling Centre	1			5.0	
LD Weighbridge	1			4.7	
LD Weighbridge Toilet	1			4.0	
evolve Shop	1			3.5	
uilding Truckwash	1			3.7	
lew Weighbridge	1			3.7	
Wethane Blank (Pre testing)				3.4	Taken at entrance to Dunmore site before main gate

Comments

Sampling performed in accordance to EPA Environmental Guidelines Solid Waste Landfills, Second Edition, 2016 Gas concentrations are reported as raw values without correction for background concentration.

Appendix E:
Laboratory Chain of Custody (COC) & Certificates of Analysis
(COA) – Overflow Events

CLIENT:

CHAIN OF CUSTODY

ALS Laboratory: please tick >

Shellharbour City Council

Cl. **Sydney**: 277 Woodpark Rd, Smithfield NSW 2176 Pn: 02 8784 8555 E:samples.sydney@alsenviro.com

Cl. Newcastle: 5 Rossegum Rd. Warahook NSW 2044
Ph:02 4968 9433 E:samples.newcastle@alsemtro.com
Ph:07 4798 0600 E: revms/ille: 1415 Desima Ct. Bohle QLD 4818

TURNAROUND REQUIREMENTS :

☐ Brisbane: 32 Shand St, Stafford QLD 4053 Ph:07 3243 7222 E samples brisbane@alsenviro.com

Standard TAT (List due date):

☐ Melbourne, 2-4 Westell Rd. Springvale VIC 3171 Ph:03 8549 9600 E, samples.meibourne@alsenwro.com

Adelaide: 2-1 Burma Rd, Pouraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

Cl Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com ☐ Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E. launceston@alsenviro.com

FOR LABORATORY USE ON Y (CITED)

- ⊦	FICE:	41 Burelli St WOLLONGONG Dunmore Quarterly Surface V	NSW 2500	ie.g Uitra	TAT may be longer for some tests Trace Organics)	☐ Non	oard IAI (Lisi Standard or u	due date): gent TAT (List d	ue date):				LABORATOR dy Seal Intact?	Y USE O	NLY (Circle)	
-	DJECT:	Testing	— — — — — — — — — — — — — — — — — — —	ALS QU	OTE NO.: WO/030/19 TEN	DER				EQUENCE NUM	BER (Circle		ce / frozen ice br	icks presen	lupon 🔑 . "	٨
_	DER NUMBER:								coc; 1	2 3 4	5 6	1 STATE IL	r? om Sample Teng		۔ ۱۳۰۷ کی این	N
-	DJECT MANAGER					·			OF: 1	2 3 4	5 6		соптент	Agia Bures U.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
<u> </u>	IPLER: M.c	had Sentos	SAMPLER	MOBILE:	0403590 899	RELINQU	JISHED BY:		RECEIVED E			RELINQUI			J &	
- H	C emailed to ALS?	YES / NO)	EDD FORM			7 M.	Sontes		And	ta		NEEII GOL	DUED BI:		RECEIVED BY:	
\vdash	ail Reports to :					DATE/TIN			DATE/TIME:	<i>></i>		DATE/TIME	. .			
Em	all Invoice to :					20.0	2.3	16:20	20	-12-	2 7	DATETIME	-		DATE/TIME:	
co	MENTS/SPECIAL	. HANDLING/STORAGE OR DISI	POSAL: CC reports to);		1-0 .				- 12	<u> </u>	L				
	ALS USE ONLY	SA MATRI	MPLE DETAILS X: Solid(S) Water(W)		CONTAINER IN	FORMATIO	N		EQUIRED incl						Additional Information	
									s are required, specif	V Total (Unlittered t	ottre required) or	Dissolved (field	filtered bottle requir			
	LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		TOTAL BOTTLES	-	nce)	ed <u>Total</u> Fe	3	^>	er.	-	Comments on likely contaminant levels, filutions, or samples requiring specific QC analysis etc.	;
							BOTTLES	TSS ATTANT-2A	(fonio-Balance)	Dissolved-ea	4 P				*3	
		SWP1	20.12.23 14:35	w				1				 				
							 							مع ا	Field Tests - pH, EC, DO & Te	mp
-													. C.Ch.	۱ -		
												ok c	VV I			
											1/2	~\\$			· · · · · · · · · · · · · · · · · · ·	
 												ソ				
<u> </u>																
											<u> </u>	├ <i>─</i> ─ '	J		·	
													Environr	nenta	Division	
-					_							_	Wollonge	ong		
										 			Work O	rder Re	ference	
							 						⊏ VV	23(ference	
-																
											-			7,00		
							 									
		L Jacob Comment				Binner many marries										
Water	Container Codes: P	= Unpreserved Plastic: N = Nitric Pres	erved Plastic: OPC = Nilvio P	000		TOTAL	10						V (2			_
V = V0 Z = Z i	DA Vial HCI Preserved to Acetate Preserved E	VB = VOA Vial Sodium Bisulphate Pre Bottle; E = EDTA Preserved Bottles; ST	erved Plastic; ORC = Nitric Preserved served; VS = VOA VIal Sulfuric Preserve = Sterile Bottle; ASS = Plastic Bag for A	ed; AV = Airfr Acid Sulphate	odium Hydroxide/Cd Preserved; s eight Unpreserved Viāl'SG = Sulfu Soils; B = Unpreserved Bag.	S = Sodium Hy uric Preserved	/droxide Preserv Amber Glass;	ed Plastic; AG = Ar H = HCl preserved	nber Glass Unpre I Plastic; HS = HC	served; AP - Airfr I preserved Spec	eight Unprese ciation bottle; S	rved F SP = Sc	elephone : 02	42253126	-	-

CERTIFICATE OF ANALYSIS

Work Order : EW2305715

Client : SHELLHARBOUR CITY COUNCIL

Contact : Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone

Project : Dunmore Landfill Overflows

Order number : 156810

C-O-C number

Sampler : Michael Santos

Site

Quote number · WO/030/19 TENDER OVERFLOW DISCHARGE

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 2

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 20-Dec-2023 15:11

Date Analysis Commenced : 20-Dec-2023

Issue Date : 29-Dec-2023 16:58

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Aneta Prosaroski **Environmental Services Representative** Laboratory - Wollongong, NSW Wisam Marassa **Inorganics Coordinator** Sydney Inorganics, Smithfield, NSW Page : 2 of 2 Work Order : EW2305715

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Overflows

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	20-Dec-2023 14:35	 	
Compound	CAS Number	LOR	Unit	EW2305715-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.5	 	
EA025: Total Suspended Solids dri	ied at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	6	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

$\mathbf{\Lambda}$
4
(A) 3

CHAIN OF CUSTODY

ALS Laboratory: please tick →

CF **Sydney**: 277 Woodpark Rd. Smithfield NSW 2176 Ph: 02 8764 8555 Eisamples sydney@disenviro.com

Fh: 02.878# 8555 Esamples.sydhey@alsenviro.com

I Newcastle: 5 Rosegum Rd. Warabrook NSW 2304

Ph:02.4968 9433 Esamples.newcastle@alsenviro.com

Brisbane: 32 Shand St, Statford QLD 49531
Ph07 3245 7222 Essemples brisbane@alsenhur com
 Townsville: 14-15 Desma Ct, Bohle QLD 4918
Ph07 4796 0600 E rownsalle entrorrenta@assarveccom

Melbourne: 2-4 Westall Rd. Springvale VIC 3171
Phr03 8549 9600 E; samples melbourne@alsenwro.com

Ph 03 8549 9600 E. samples melbourne@alsenwro.cc

Adelaide: 2-1 Burma Rd, Pooraka SA 5095
Ph: 08 8359 0890 E.adelaide@alsenviro.com

El Perth: 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples perth@alsenviro.com El Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E. launceston@alsenviro.com

LIENT:	Shellharbour City Council		TURNARO	UND REQUIREMENTS : Star	dard TAT (List	due date):					FOR	LABORATO	RY USE O	NLY (Circle)
OFFICE:			(Standard TA ⁻ e.g., Ultra Tra	T may be longer for some tests	Standard or urg	gent TAT (L	ist due dat	e):			Custi	dy Seal Infact?		NO NA
PROJECT:	Dunmore Landfill Overflows		ALS QUOT	TE NO.: WO/030/19 TENDER			- T	COC SEQU	ENCE NUMBI	ER (Circle)	Eree recei	ice / frozenice ot?	bnicks preser	rtupori (Yes) No NA
ORDER NUMBER:							co	C: 1 2	3 4	5 6	7 Rand	om Sample Te	mperature on	Receipt C
ROJECT MANAGER:	Ryan Stirling						OF	: 1 2	3 4	5 6	7 Other	comment		<i>6.</i> 2.
AMPLER:	-bert Oc	SAMPLER M	OBILE:	· · · · · · · · · · · · · · · · · · ·	JISHED BY:			CEIVED BY:		·····	RELINQUI	SHED BY:		RECEIVED BY:
OC emailed to ALS?	(YES / NO)	EDD FORMA	T (or defaul	t): [6]	en L C	let i-	o ,	Inole	'n					
mail Reports to :	·	·		DATE/TII				TE/TIME:	,		DATE/TIM	E:		DATE/TIME:
mail Invoice to :				6.2	.24	14	∴3₹	6/2/	24					
OMMENTS/SPECIAL	. HANDLING/STORAGE OR DISPOS	AL: CC reports to:									-			
ALS USE ONLY		E DETAILS blid(S) Water(W)	-	CONTAINER INFORMATIO	N			IRED includin						Additional Information
														Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES									
						SST	표							
	SWP1	12.24 14:35	w			1	✓		_					
W-L.			· ·											
				110										
<u> </u>				**							' m Oľ	ntal Divis	sion	
							 			Env	london(follille:	1		
										W V	ork Orde	r Referen	ce ———	\{\bar{\pi} \\ \pi \\ \
										F	=W2	Reference 14005	0/6	
							 	-						
			<u> </u>							- 1		聯合機能		:
					-								1111	
									5	_	II Y			
							-			_ '	## ## ## ## ## ## ## ## ## ## ## ## ##	(K) (A)		-
										— ты	ephone : 02	42253125		Hart.
				TOTA	10					Leit	-1 **		ı	· I
Vater Container Codes:	P = Unpreserved Plastic; N = Nitric Preserv	ed Plastic; ORC = Nitric Preserved	ORC; SH = So	odium Hydroxide/Cd Preserved; S = Sodium sight Unpreserved Vial SG = Sulfuric Preserve	Hydroxide Preser	ved Plastic;	AG = Amber	Glass Unpreser	ved; AP - Airfr	reight Unpres	erved Plastic			<u> </u>
= Zinc Acetate Preserved	Bottle; E = EDTA Preserved Bottles; ST = S	terile Bottle; ASS = Plastic Bag for	Acid Sulphate S	Soils; B = Unpreserved Bag.	eu Amber Glass;	H = HCl pi	reserved Plas	stic; HS = HClp	reserved Spec	ciation bottle;	SP = Sulfuric	Preserved Plas	tic; F = Form	naldehyde Preserved Glass;

ENFM204

Client

CERTIFICATE OF ANALYSIS

Work Order : EW2400576

: SHELLHARBOUR CITY COUNCIL

Contact : Joel Coulton

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone : --

Project : Dunmore Landfill Overflows

Order number : 156810

C-O-C number : ---Sampler : Client
Site : ----

Quote number : WO/030/19 TENDER OVERFLOW DISCHARGE

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 06-Feb-2024 15:26

Date Analysis Commenced : 06-Feb-2024

Issue Date : 15-Feb-2024 14:08

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW

Page : 2 of 2 Work Order : EW2400576

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Overflows

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	06-Feb-2024 14:35	 	
Compound	CAS Number	LOR	Unit	EW2400576-001	 	
				Result	 	
EA005FD: Field pH						
pH		0.1	pH Unit	7.7	 	
EA025: Total Suspended Solids d	ried at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

CERTIFICATE OF ANALYSIS

Work Order : EW2401299

Client : SHELLHARBOUR CITY COUNCIL

Contact : Ryan Stirling

Address : LAMERTON HOUSE, LAMERTON CRESCENT

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Telephone

Project : Dunmore Surface Water SWP01 Overflow

Order number

C-O-C number

Sampler : Michael Santos

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER CPI 2024

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 5

Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 18-Mar-2024 17:00

Date Analysis Commenced : 18-Mar-2024

Issue Date · 27-Mar-2024 09:34

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW

Page : 2 of 5 Work Order : EW2401299

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Surface Water SWP01 Overflow

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page : 3 of 5
Work Order : EW2401299

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Surface Water SWP01 Overflow

7 mary trour recourts					1	1		
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1				
(WOUNTER)		On mary !!	na data / times	Point 1 18-Mar-2024 07:30				
			ng date / time					
Compound	CAS Number	LOR	Unit	EW2401299-001				
EAGSED Field all				Result				
EA005FD: Field pH		0.1	pH Unit	7.6			<u></u>	
·		0.1	prionit	7.0				
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	753				
EA015: Total Dissolved Solids dried at	180 ± 5 °C	10						
Total Dissolved Solids @180°C		10	mg/L	458				
EA025: Total Suspended Solids dried a	t 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5				
EA045: Turbidity								
Turbidity		0.1	NTU	8.2				
EA116: Temperature		100						
Temperature		0.1	°C	25.2				
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1				
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1				
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	232				
Total Alkalinity as CaCO3		1	mg/L	232				
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA	la l						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	21				
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	87				
ED093F: Dissolved Major Cations		11						
Calcium	7440-70-2	1	mg/L	37				
Magnesium	7439-95-4	1	mg/L	17				
Sodium	7440-23-5	1	mg/L	94				
Potassium	7440-09-7	1	mg/L	8				
EG020F: Dissolved Metals by ICP-MS		11						
Iron	7439-89-6	0.05	mg/L	<0.05				
<u> </u>				<u> </u>	<u> </u>	<u> </u>		

Page : 4 of 5
Work Order : EW2401299

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Surface Water SWP01 Overflow

Sub-Matrix: WATER (Matrix: WATER)		Sampl	Sample ID	SWP1 Point 1 18-Mar-2024 07:30	 	
Compound	CAS Number	LOR	Unit	EW2401299-001	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.175	 	
Iron	7439-89-6	0.05	mg/L	0.36	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discre	ete Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.06	 	
EK055G-NH4: Ammonium as N by	y DA					
Ammonium as N	14798-03-9_N	0.01	mg/L	0.06	 	
EK057G: Nitrite as N by Discrete	Analyser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete	Analyser					
Nitrate as N	14797-55-8	0.01	mg/L	0.02	 	
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.02	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	7.53	 	
ø Total Cations		0.01	meq/L	7.54	 	
ø Ionic Balance		0.01	%	0.08	 	
EP005: Total Organic Carbon (TO	(C)					
Total Organic Carbon		1	mg/L	17	 	
EP025FD: Field Dissolved Oxyge	n					
Dissolved Oxygen		0.01	mg/L	6.10	 	

Page : 5 of 5 Work Order : EW2401299

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Surface Water SWP01 Overflow

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EK055G-NH4: Ammonium as N by DA

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 $^{\circ}\text{C}$

Appendix F: Calibration Certificates

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Calibration certificate number

41298 H-09833

Instrument

Laser One

Serial Number

41298

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from

0-1000ppm CH4

	Gas verification from	0-1000bbm e.r.			Average		Maximum	Maximum error
Full scale	Gas concentration	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	response (ppm)	Maximum error (ppm)	error (% F.s.)	%
(ppm)	(ppm)	(bp.iii)		0	0.00	0.00	0.00	0.00
1000	0.0	0	0	0	3.00	0.09	0.01	0.01
1000	2.91	3	3	3		0.00	0.00	0.00
	10.3	10.3	10.3	10.3	10.30		0.00	0.00
1000		101	101	101	101.00	0.00		
1000	101.0		1010	1010	1010.00	1.00	0.10	0.10
1000	1011	1010	1010	1010				T 0/

Uncertainty	0.10	%
Max % error	0.10	% FS

Gas verification from

0-100% vol CH4

G	as verification from	0-700/9 001 011-				Maximum	Maximum	
Full scale	Gas concentration	Response 1	Response 2	Response 3 (%vol)	Average response (%vol)	error (%vol)	error (% F.s.)	Maximum error
(%vol)	(%vol)	(7000)		0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	0.00		2.20	0.00	0.00	0.00
	2,20	2,20	2.20	2.20			0.00	0.00
100.00			5.00	5.00	5.00	0.00		0.00
100.00	5.00	5.00		15.00	15.00	0.00	0.00	
	15.00	15.00	15.00		49,90	0.10	0.10	0.10
100.00		49.90	49.90	49.90	49.90		0.00	0.00
100.00	50.00		100.00	100.00	100.00	0.00	0.00	0.00
100.00	100.00	100.00	100.00	100.00			T 0.40	0/

			_
Uncertainty	0.10	%	
Max % error	0.10	% FS	
IIVIAX % EII OI I	0.10		_

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

G	as vernication from	A section	,		Average	Maximum	Maximum	Maximum error
	Gas concentration	Response 1	Response 2 (LEL%)	Response 3 (LEL%)	response (%vol)	error (LEL%)	error (% F.s.)	%
(%vol)	(LEL%)	(EEE 10)	-	2.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	0.00	0.00			0.00	0.00
100.00		2.00	2.00	2.00	2.00	0,00		0.00
100.00	2.00		50.00	50.00	50.00	0.00	0.00	0.00
100.00	50.00	50.00	50.00	30.00				1 0/

Uncertainty	0.00	%	
	0.00	% FS	
Max % error	0.00	70.10	_

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Environmental conditions during calibration

Temp.	22.6	С
Pressure	998	mBar

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	110241	03/11/2025	N2
3 ppm	292675	17/08/2027	CH4
10 ppm	119779SG	11/04/2024	CH4
100ppm	\$1035778	08/03/2028	CH4
1000 ppm	S1500109Y	02/03/2028	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	S1204209S	27/02/2028	CH4
5.0% vol	244842	08/08/2025	CH4
15% vol	268737	08/08/2025	CH4
50% vol	267652	09/05/2025	CH4
100% vol	1262313	09/08/2027	CH4

Calibration results: Pass

Next scheduled calibration: 03/07/2024

Calibration date: 03/07/2023

Issued by: Keeley Knight

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

Appendix G: Gas Flare Reports

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions.

Carbon credits enable a commercially viable project to create additional abatement.

Results Achieved since the Project Commenced*

26.7 million m3

253 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

4.2 million seedlings planted for 10 years (t CO2e)

5,738 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its **30% baseline**) from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

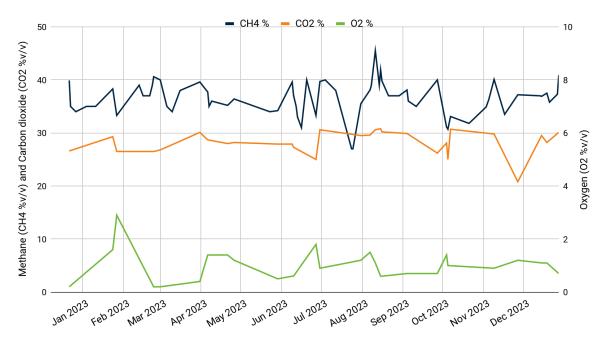
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	15/01/2024
Report month:	December 2023	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

Comments on	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.					
changes to existing	April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.					
system:	• June 2016 - LGI disconnected the extended gas capture system to assist Council.					
	• September 2016 - LGI disconnected the extended gas capture system to assist Council.					
	November 2016 - LGI commissioned the connection to leachate sump 6 as of					
	23-11-2016.					
	May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system					
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure					
	that had been previously disconnected, including 4 wells on the dimple and a 160mm					
	leachate riser.					
	April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.					
	• February 2021 - LGI installed 13 new vertical wells, including a new submain					
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser					
	for greater accuracy and reliability					
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for					
	intermediate capping to continue across the top of cell 3					
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater					
	reliability of condensate management in the main gas line.					
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with					
	evacuated leachate being returned into sump 5.					
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with					
	evacuated leachate being returned into sump 5.					
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The					
	new flare has improved control systems, reliabilty and performance, and will be compliant					
	with current Type B Gas and Hazardous Area Zoning regulations.					
Comments on	Availability - 92.59 %					
	Down Time: 55.17 h					
maintenance:						
mamtenance.	0.83h - Planned Outage					
	54.33h - Forced Outage Internal					
	104.5011 - 1 01000 Outage Internal					
	Field tuned:					
	- 28/12/2023					
	- 20/12/2023					
Recommendations:	LGI recommends continued regular communication with Council regarding leachate					
	management, site performance and future planning. Potential for re-drilling old wells.					

07 3711 2225 Page 2 of **6**


Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
15/12/2023	36.9	29.5	1.1	294	749	26,577,789
19/12/2023	37.5	28.2	1.1	292	452	26,605,676
21/12/2023	35.8	-	-	272	440	26,619,312
28/12/2023	40.9	30.1	0.7	292	484	26,665,802
Average	37.8	29.3	0.9666666	288	531	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.

Dunmore - Flow Rate

1000

750

(E) 500

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

0 250

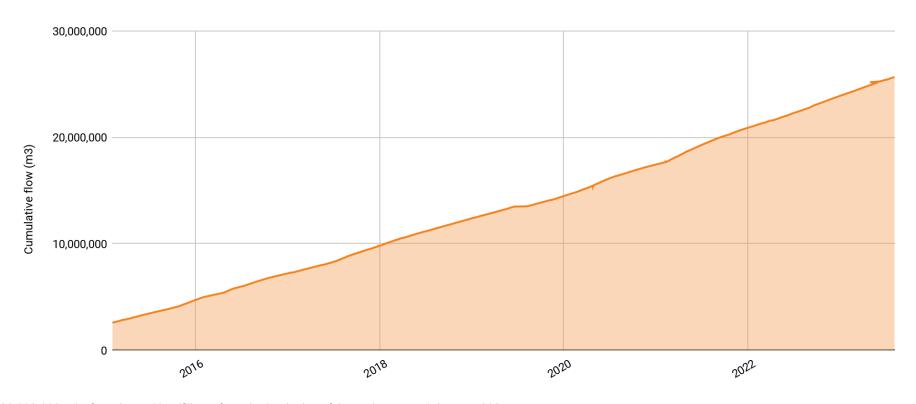
0 250

0 250

0 250

0 250

0 250


0 250

0 250

0

Dunmore - Cumulative Flow

26,690,608 m3 of combusted landfill gas from the beginning of the project up to 1 January 2024 represents:

- 253,497 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,224,945 seedlings planted for 10 years
- 5,738 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions.

Carbon credits enable a commercially viable project to create additional abatement.

Results Achieved since the Project Commenced*

26.9 million m3

CARBON ABATEMENT

255 thousand tonnes (t CO2e - environmental

benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

4.3 million seedlings planted for 10 years (t CO2e) 5,628 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

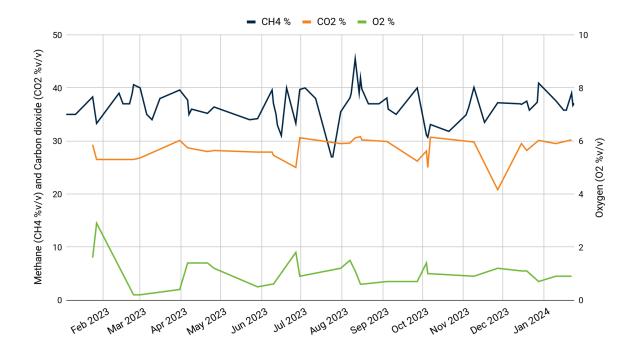
- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its **30% baseline**) from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

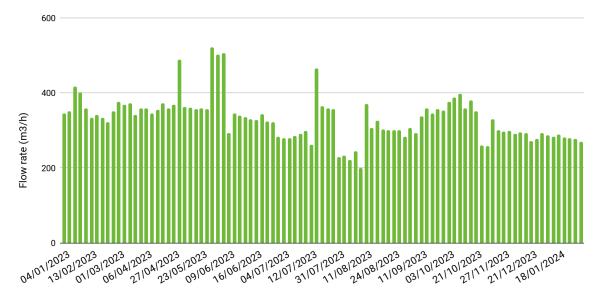
Site:	Dunmore	Report issue date:	29/02/2024
Report month:	January 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist the Council.
	September 2016 - LGI disconnected the extended gas capture system to assist the
	Council.
	November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	November 2019 - LGI on site to move mainline up battery, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the dimple and a
	160mm leachate riser.
	April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The
	new flare has improved control systems, reliability and performance, and will be compliant
	with current Type B Gas and Hazardous Area Zoning regulations.
0	
	Availability - 100.00 %
	Down Time: 0.00 h
maintenance:	
	Field tuned:
	- 18/01/2024
	- 22/01/2024
Recommendations:	LGI recommends continued regular communication with Council regarding leachate
	management, site performance and future planning.
	· · · · · · · · · · · · · · · · · · ·

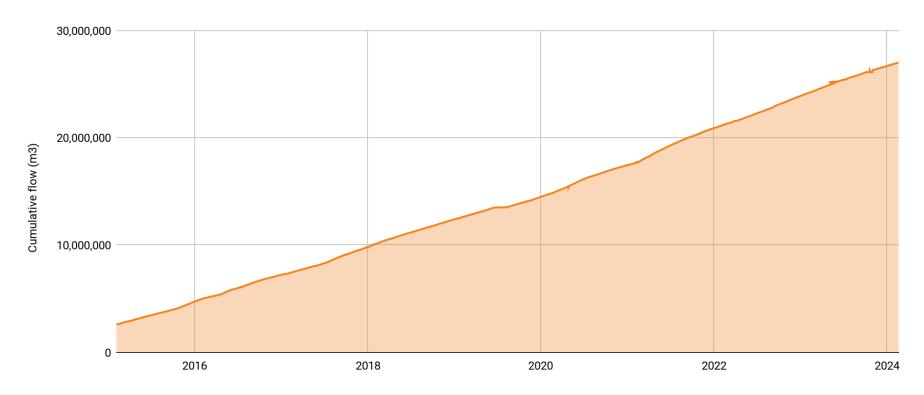


Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
10/01/2024	37.6	29.5	0.9	287	462	26,755,289
16/01/2024	35.8	-	-	284	453	26,795,576
18/01/2024	35.8	-	-	289	459	26,809,196
22/01/2024	39	30.2	0.9	281	459	26,836,367
Average	37.1	29.9	0.9	285	458	-


Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.



Dunmore - Flow Rate

Dunmore - Cumulative Flow

26,900,446 m3 of combusted landfill gas from the beginning of the project up to 1 February 2024 represents:

- 255,490 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,258,161 seedlings planted for 10 years
- 5,628 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions.

Carbon credits enable a commercially viable project to create additional abatement.

Results Achieved since the Project Commenced*

FOCUS YOUR ENERGY

27.1 million m3

CARBON ABATEMENT

257 thousand tonnes CO2e **ACCUs CREATED**

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

4.3 million seedlings planted for 10 years

5,555 for the last 12 months of carbon abatement

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline)
 from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

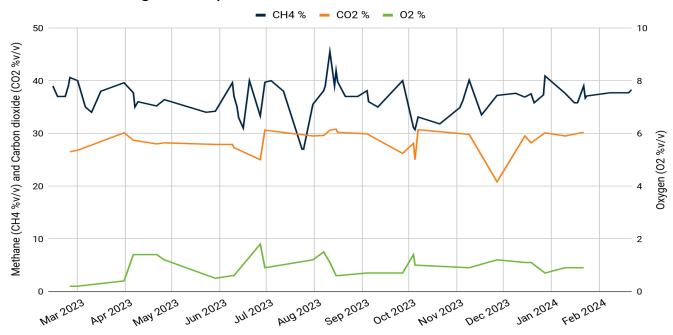
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

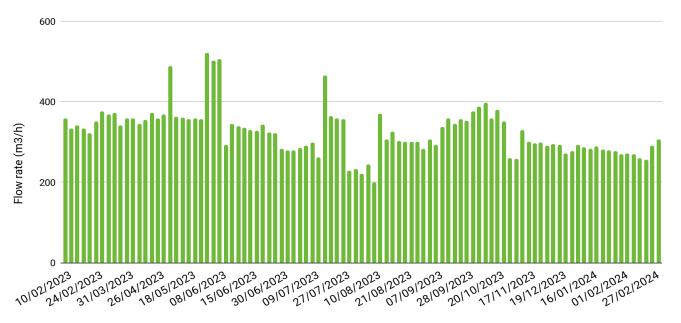
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	15/03/2024
Report month:	February 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

changes to existing	 May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5. June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.
	0.67h - Forced Outage External
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

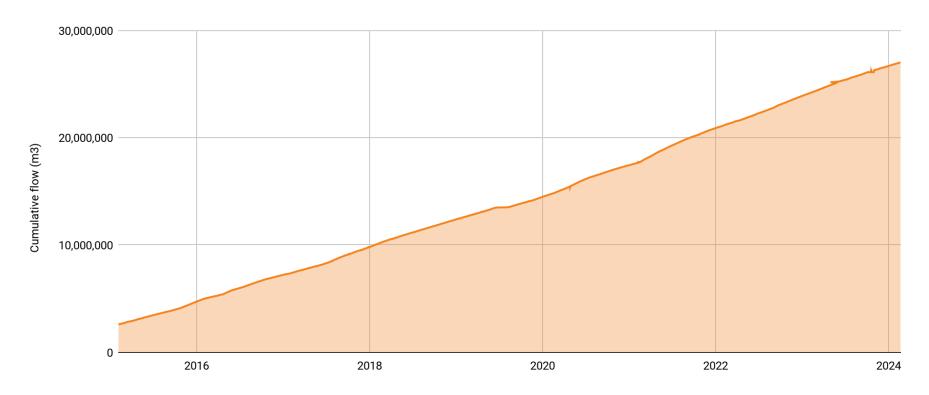
Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
08/02/2024	37.7	-	-	271	448	26,948,083
20/02/2024	37.7	-	-	270	447	27,025,085
22/02/2024	38.3	-	-	260	440	27,037,652
27/02/2024	39.9	30.6	0.4	290	484	27,068,892
Average	38.4	30.6	0.4	273	455	-


Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.

Dunmore: Biogas composition


Dunmore - Flow Rate

07 3711 2225

Dunmore - Cumulative Flow

27,086,656 m3 of combusted landfill gas from the beginning of the project up to 1 March 2024 represents:

- 257,258 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,287,637 seedlings planted for 10 years
- 5,555 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Archived commentary:

Comments on changes to existing system:

- Comments on January 2016 LGI disconnected the 4 lateral wells and 8 vertical wells.
- **changes to existing** April 2016 LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
 - June 2016 LGI disconnected the extended gas capture system to assist
 - **September 2016** LGI disconnected the extended gas capture system to assist Council.
 - **November 2016** LGI commissioned the connection to leachate sump 6 as of 23-11-2016.
 - May 2017 LGI installed an additional 10 vertical wells to the existing LFG system
 - **November 2019** LGI on site to move mainline up batter, and reconnected infrastructure that had been previously disconnected, including 4 wells on the dimple and a 160mm leachate riser.
 - April 2020 LGI installed a flowline to sump 6 after earlier disconnection.
 - February 2021 LGI installed 13 new vertical wells, including a new submain
 - March 2022 LGI replaced the flare gas analyser panel with a Draeger model analyser for greater accuracy and reliability
 - August 2022 LGI repaired the 225mm mainline and adjacent submain to allow for intermediate capping to continue across the top of cell 3
 - **December 2022** LGI installed a pneumatic bore pump in a j-trap, allowing for greater reliability of condensate management in the main gas line.