
Annual Environmental Monitoring Report (AEMR) 2024

Project No:	ENRS0033
Address:	Dunmore Recycling & Waste Depot, 55 Buckleys Road, Dunmore, NSW
Date:	29/11/2024

www.enrs.com.au

(02) 4448 5490

projects@enrs.com.au

ABN: 68 600 154 596

Author and Document Control

Written / Submitted By	Reviewed / Approved By
Beefon	
Taite Beeston (BSc.) Geologist & Environmental Consultant	

Record of Distribution:

Copies	Status	Document	Date	Prepared For
PDF	Rev.1	202409 Q4_ENRS0033_SCC Dunmore Landfill_AEMR	29/11/2024	ALS c/- SCC

Executive Summary

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2023-2024 monitoring period comprising of four (4) quarterly sampling events, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984.

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three (3) primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

Based on the findings obtained during the 2023-2024 annual monitoring program the following conclusions and recommendations are provided:

Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. Depth to groundwater was generally <5mBGL. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;

- Groundwater throughout the annual monitoring period reported exceedances above the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater wells across the Site. The analytes were considered to be key indicators of leachate. The exceedances were within range of historical values with no significant changes in concentrations;
- Offsite sample locations within Rocklow Creek generally reported concentrations of analytes below the SAC. However, concentrations of ammonia were reported above the ecological stressor value on multiple occasions;
- Surface gas methane monitoring of the landfill cap reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. Minor exceedances were reported in dust gauges DDG3 and DDG4 through the annual monitoring period. The potential source of the dust should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;
- Gas Flare temperatures were reported below the required KPI of 760 degrees Celsius throughout the first three (3) quarters. An increase in temperature was reported within the fourth quarter;
- Based on the data reviewed for the 2023-2024 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

Table of Contents

E	kecutiv	e Summaryii
1	Intr	oduction
	1.1	Project Background
	1.1.	1 Site History
	1.2	EPL Requirements
	1.3	Objectives
	1.4	Scope of Work
2	Site	e Identification
	2.1	Site Identification
	2.2	Surrounding Land Use
	2.2.	.1 Sensitive Receptors
	2.3	Topography13
	2.4	Soil Landscape
	2.5	Geology14
	2.6	Hydrogeology14
	2.6.	.1 Existing Bores
	2.6.	.2 Flow Regime
	2.7	Surface Water15
3	Ass	essment Criteria15
	3.1	Water Quality Guidelines
	3.1	Groundwater & Surface water Assessment Criteria15
	3.1.	.1 Ammonia Assessment criteria 16
	3.2	Dust Deposition Assessment Criteria 17
	3.3	Surface Methane Gas Assessment Criteria17
	3.4	Gas Accumulation Assessment Criteria within Enclosed Structures
4	Data	a Quality Objectives (DQO)17
	4.1	Step 1: State the problem
	4.2	Step 2: Identify the decision/goal of the study17
	4.3	Step 3: Identify the information inputs
	4.4	Step 4: Define the study boundaries
	4.5	Step 5: Develop the analytical approach (decision rule)18

	4.6	Step	6: Specify performance or acceptance criteria	18
	4.7	Step	7: Develop the plan for obtaining data	18
5	Sa	mpling	g Methodology	19
	5.1	Wat	er Sampling	19
	5.1	L.1	Location of Water Monitoring Points	19
	5.1	L.2	Depth to Water	19
	5.1	L.3	Sample Collection	19
	5.1	L.4	Groundwater Sampling	20
	5.1	L.5	Field Testing	20
	5.2	Dust	t Deposition Sampling	20
	5.3	Surf	ace Methane Gas Monitoring	20
	5.4	Gas	Accumulation Monitoring in Enclosed Structures	21
	5.5	Labo	pratory Analysis	21
	5.6	Flar	e Monitoring	21
	5.7	QAC	2C	21
6	Wa	ater Q	uality Results	22
	6.1	Ove	rflow Results	22
	6.2	Phys	sical Indicators	22
	6.2	2.1	Groundwater Depth	22
	6.2	2.2	Salinity	23
	6.2	2.3	Dissolved Oxygen	23
	6.2	2.4	рН	24
	6.2	2.5	Total Suspended Solids (TSS)	24
	6.3	Inor	ganic Analytes	25
	6.3	3.1	Ammonia	25
	6.3	3.2	Nitrate	25
	6.3	3.3	Nitrite	26
	6.4	Anic	ons	26
	6.4	4.1	Chloride	26
	6.4	1.2	Fluoride	26
	6.4	1.3	Sulphate	26
	6.4	1.4	Total Alkalinity	26
	6.4	1.5	Bicarbonate Alkalinity	26

6	5.5	Metals	27
	6.5.2	1 Manganese (Total Mn)	27
	6.5.2	2 Iron (total Fe)	27
	6.5.3	3 Iron (Dissolved Fe)	27
e	5.6	Calcium	27
e	5.7	Potassium	27
e	5.8	Organic Analytes	27
	6.8.2	1 Total Organic Carbon	27
7	Dust	t Gauge Results	28
8	Met	hane Monitoring Results	29
٤	3.1	Surface Gas Methane	29
8	3.2	Gas Accumulation Monitoring in Enclosed Structures	29
9	Flare	e Operations Results	29
10	Qua	lity Assurance/Quality Control Data Evaluation (QAQC)	30
	Qua 10.1	lity Assurance/Quality Control Data Evaluation (QAQC)	
1			30
1	L0.1	Field Sampling QAQC	30 32
1 1 1	10.1 10.2 10.3	Field Sampling QAQC	30 32 34
1 1 1 11	10.1 10.2 10.3	Field Sampling QAQC Laboratory QAQC QAQC Discussion	30 32 34 35
1 1 1 11	10.1 10.2 10.3 Ann	Field Sampling QAQC Laboratory QAQC QAQC Discussion ual Environmental Assessment	30 32 34 35 35
1 1 1 11	10.1 10.2 10.3 Ann 11.1	Field Sampling QAQC Laboratory QAQC QAQC Discussion ual Environmental Assessment Monitoring Point Summary Environmental Management	30 32 34 35 35 36
1 1 1 1 1 1 1 1	10.1 10.2 10.3 Ann 11.1 11.2	Field Sampling QAQC Laboratory QAQC QAQC Discussion ual Environmental Assessment Monitoring Point Summary Environmental Management	30 32 34 35 36 36
1 1 1 1 1 1 1 1 1	10.1 10.2 10.3 Ann 11.1 11.2 11.2	Field Sampling QAQC Laboratory QAQC QAQC Discussion ual Environmental Assessment Monitoring Point Summary Environmental Management 2.1 Landfill Operations	30 32 34 35 36 36 36
1 1 1 1 1 1 1 1 1	10.1 10.2 10.3 11.1 11.2 11.2 11.3 11.4	Field Sampling QAQC Laboratory QAQC QAQC Discussion	 30 32 34 35 36 36 36 36 36 36
1 1 1 1 1 1 1 1 1 1	10.1 10.2 10.3 11.1 11.2 11.2 11.3 11.4 Con	Field Sampling QAQC Laboratory QAQC QAQC Discussion	 30 32 34 35 36 36 36 36 36 36 37

List of Tables

Table 2-1:	Site Identification	11
Table 2-2:	Summary of surrounding land use	13
Table 3-1:	Water Quality Assessment Criteria	15
Table 3-2:	Groundwater & Surface Water Assessment Criteria	16

Table 4-1: Summary of Data Quality Objectives (DQO)1	8
Table 5-1: Summary of QAQC for Sample Program 2	1
Table 6-1: Summary of Overflow Events 2	2
Table 7-1: Summary of Dust Gauge Results 2	8
Table 10-1: Sampling QAQC Procedures	D
Table 10-2: Laboratory QAQC procedures 3	3
Table 10-3: QAQC and Data Evaluation Summary	4
Table 14-1: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 1 December 2023 4	4
Table 14-2: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 2 March 2024 4	5
Table 14-3: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 3 June 2024 4	6
Table 14-4: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 4 September 2024 4	7
Table 14-5: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 1	
December 2023 4	8
Table 14-6: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 2	
March 2024 4	9
Table 14-7: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 3	
June 2024	D
Table 14-8: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 4	
September 2024 5	1

List of Figures

Figure 2-1 Project Location	12
Figure 14-1: Sampling Points & Site Plan	41
Figure 14-2: Surface Methane Gas Sample Transects	42

Appendices

Appendix A:	EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022. Updated 30/04/2024)
Appendix B:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples
Appendix C:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples
Appendix D:	Surface Gas (Methane) Field Sheets
Appendix E:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events
Appendix F:	Calibration Certificates
Appendix G:	Gas Flare Reports

1 Introduction

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2023-2024 monitoring period comprising of four (4) quarterly sampling events, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984.

1.1 Project Background

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three (3) primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.3 Objectives

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

1.4 Scope of Work

The scope of work for this AEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the monitoring events in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for water, dust samples and methane gas collected and provided by ALS and landfill gas flare temperatures collected by LGI, as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust, methane gas, gas flare temperatures);
- Review all quarterly environmental monitoring reports from the 2023-2024 reporting period and available data from at least the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2 Site Identification

2.1 Site Identification

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 2-1** below. Details of the Site boundary and sampling points are provided in the Site Plan as **Figure 14-1**. The key features required to identify the Site are summarised in **Table 2-1**.

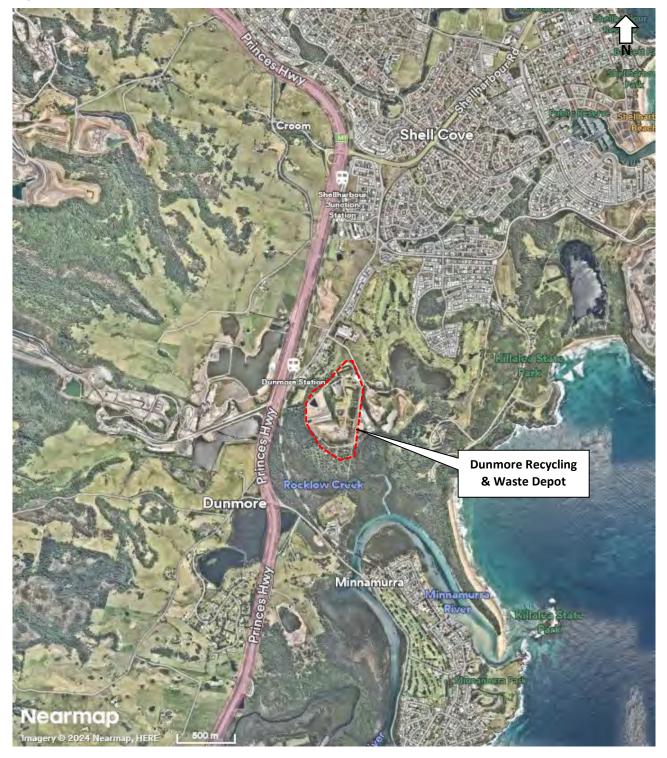


Table 2-1: Site Identification

Site	Description
Site name	Dunmore Recycling and Waste Depot
Street address	44 Buckleys Road, Dunmore, NSW 2529
Property description	-
(Lot / Deposited Plan)	21 / 653009 and 1 / 419907
Easting/Northing (GDA2020) (approximate centre of Site)	Zone 56H Easting: 302280 Northing: 6168169 (Approximate centre of Site)
Current owners	Shellharbour City Council
Current occupiers	Shellharbour City Council
Site area (total)	54.78 hectares
Site dimensions	Irregular shaped boundary. Please refer to Figure 14-1.
Areas excluded or inaccessible	Assessment was limited to the available data for the sample points listed in the EPL.
Local government area	Shellharbour City Council
Current zoning	RU1 Primary Production
Locality map	Albion Park 9028
Trigger for assessment	Reporting requirements of EPL 5984.
State or Local government statutory controls	 EPL 5984; Contaminated Land Management Act 1997; Environment Protection Act 1997; Waste Avoidance and Resource Recovery Act (2001). Work Health and Safety Act 2011; and Work Health and Safety Regulations 2011.
Legal permissions to access the Site obtained or required	N/A. ENRS did not access the Site.
Consent of adjoining landowners and/or occupiers to access land (if required)	N/A. Not required for this scope of work.

Figure 2-1 Project Location

Source: Nearmap.com.au (cited 15/10/2024)

2.2 Surrounding Land Use

The current activities and operations on adjacent properties and the surrounding area include:

Table 2-2: Summary of surrounding land use

Direction	Land Use
North	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- > Recreational users of the Minnamurra River estuary environs;
- Neighbouring and down gradient stakeholders;
- Ecological receptors flora and fauna.
- Shallow soil, groundwater and stormwater vertical and lateral migration of contaminants (if any) and connectivity with shallow groundwater, drainage waterways and nearby tributaries; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 Topography

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 Soil Landscape

Review of the Sites soil landscape was conducted with reference to the Kiama 1:100,000 soil landscape map. The Site was mapped as underlain by the Mangrove Creek Estuarine (mc) organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Landscape – vegetated tidal flats in estuarine areas on Holocene sediments. Relief <3 m. Slopes <3%. Mangrove open-scrub, saltmarsh herbland, sedgeland and low open-forest

Soils - deep (>150 cm) Siliceous Sands (Uc1.21) and Calcareous Sands (Uc1.11) and Solonchaks (Uc1.11) occur on mangrove flats. Humic Gley Soils (Uc4.53) and Solonchaks (Uc1.11) occur on saltmarshes.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils.

2.5 Geology

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet (See Figure 4). The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 Hydrogeology

Groundwater resources in the area are expected to be associated with Shallow unconfined alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the NSW Office of Water (NOW) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see Figure 5). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (Boral Site) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences, 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State

Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 Surface Water

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3 Assessment Criteria

ENRS have adopted the most appropriate criteria in accordance with current state and national guidelines. Where available, Australian and NSW EPA endorsed guidelines have been referenced in preference to international standards.

3.1 Water Quality Guidelines

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC;2013). The relevant criteria to protect environmental values are provided in **Table 3-1**:

Table 3-1: Water Quality Assessment Criteria

Environmental Value	Relevant Guideline
Ecosystems / Health Screening Levels	 ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality); ASC NEPM (2013); and Health Screening Levels for Petroleum Hydrocarbons in Soil & Groundwater (CRC CARE, Sept. 2011)
Drinking Water	 Australian Drinking Water Guidelines (ADWG)

3.1 Groundwater & Surface water Assessment Criteria

The ANZG (2018) provide <u>default quideline values</u> (DGVs) for four (4) levels of protection categorised by the percent of species possibly affected, being 80%, 90%, 95% or 99% of species. Where DGVs are not available reference is made against the ANZECC (2000) Trigger Values (TV). The NSW Office of Water (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the 95 per cent of species level of protection. This assessment has adopted the assessment criteria considered most appropriate for the contaminants of concern based on the Site's EPL and results provided by ALS. The adopted TV for the Site Assessment Criteria (SAC) are summarised in **Table 3-2** below.

	Units	Fresh	Marine	Drinking Water ^B		
Analyte	Units	Water ^A	Water ^A	Health	Aesthetic	
Chloride	mg/L	-	-	-	250	
Calcium	mg/L	-	-	-	-	
Magnesium	mg/L	-	-	-	-	
Sodium	mg/L	-	-	-	180	
Potassium	mg/L	-	-	-	-	
Manganese	mg/L	1.9	-	0.5	0.1	
Total iron	mg/L	-	-	-	0.3	
Dissolved iron	mg/L	-	-	-	0.3	
Fluoride	mg/L	-	-	1.5	-	
Ammonia as N ^C	mg/L	0.91 (pH 8)	0.91 (pH 8)	-	0.5	
Nitrate as N	mg/L	0.7	-	50	-	
Nitrite as N	mg/L	-	-	3	-	
Total Organic Carbon	mg/L	-	-	-	-	
Bicarbonate alkalinity as CaCO3	mg/L	-	-	-	-	
Total alkalinity as CaCO3	mg/L	-	-	-	-	
Sulfate as SO4 - turbidimetric	mg/L	-	-	-	250	
Dissolved Oxygen - % Saturation	%	85-110%	-	-	-	
(surface water only)						
Suspended Solids (SS) (surface water only)	mg/L	-	-	-	-	
Turbidity (surface water only)	NTU	-	-	-	5	
рН	рН	6.5-8.5		6.5-8.5	6.5-8.5	
Electrical Conductivity	µS/cm	2200	-	-	-	

Table 3-2: Groundwater & Surface Water Assessment Criteria

Table notes:

Criteria is only provided for the analytes test by ALS and listed within EPL 5984.

A: Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.

B: Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).

D. Criteria for ammonia. See Section 3.1.1:

3.1.1 Ammonia Assessment criteria

In addition to the default TV of 0.91mg/L (pH 8) for ammonia, Table 3.3.2 of the ANZECC (2000) also provides stressor values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems. The table provides a stressor guideline for ammonia of **0.2mg/L** at pH 8 for lowland rivers. For the purposes of this assessment, the value has been applied to all water samples, excluding the leachate tank.

pH specific ammonia TVs. Additional sample point specific pH dependant trigger values for total ammonia were also adopted when a sample was outside of 8 pH units. Sample specific values were

based on Table 8.3.7 of the ANZECC (2000). The additional criteria and results are presented in Table 14-5 to Table 14-8 attached.

3.2 Dust Deposition Assessment Criteria

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1-Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m2/month.

3.3 Surface Methane Gas Assessment Criteria

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.4 Gas Accumulation Assessment Criteria within Enclosed Structures

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or within 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4 Data Quality Objectives (DQO)

If sampling is conducted, Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented in the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013).

4.1 Step 1: State the problem

The Site is currently operating as an active landfill and requires regular environmental monitoring in accordance with the EPL 5984.

4.2 Step 2: Identify the decision/goal of the study

The primary goals / objectives of the investigation program were to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in a Quarterly Environmental Monitoring Report.

4.3 Step 3: Identify the information inputs

The provided results shall be used to identify any risks to the sensitive receptors or change in site conditions. The following inputs were required:

- Representative environmental samples;
- Measurements of environmental parameters;
- Comparison of the parameter results against the adopted Site Assessment Criteria (SAC);
- > The completion of an Quarterly Environmental Monitoring Report.

4.4 Step 4: Define the study boundaries

The assessment was limited to sampling locations listed in EPL 5984. As listed in **Appendix A** and depicted in **Figure 14-1** - **Figure 14-2**.

4.5 Step 5: Develop the analytical approach (decision rule)

The site information and results obtained from this assessment scope will be compared against the NSW EPA endorsed SAC documented in **Section 3** with considerations of the land use and nearby receptors. The decision rule process is defined by the following:

- > QA/QC indicate the results are reliable;
- Laboratory Practical Quantitation Limits (PQL) or Limits of Reporting (LOR) are less than the SAC; and
- > Results meet the adopted SAC and/or are within background levels and regulatory criteria.

4.6 Step 6: Specify performance or acceptance criteria

To ensure the quality of the environmental data collected during the assessment, detailed quality assurance and quality control (QA/QC) measures will be applied by ALS. The QA/QC measures will be followed from the inception of the project, during field sampling, laboratory analysis of samples and data reporting. The QAQC measures understood to have been adopted by ALS are documented in detail below within **Table 5-1**.

4.7 Step 7: Develop the plan for obtaining data

The seventh and final step involves identifying the most effective sampling and analysis design for generating the data that is required to satisfy the data quality objectives. The required sampling program is based on and accounts for the following key points:

- Requirements of Sites EPLs; No. 5984 and 12903;
- > The results will be compared against the adopted SAC for the proposed land use.

The indicators (DQI) used to identify that data obtained and provided by ALS has been done so in a way which meets project data quality objectives (DQO) summarised below.

Table 4-1: Summary of Data Quality Objectives (DQO)

DQO	Evaluation Criteria
Documentation	 Completion of field records, chain of custody documentation,
completeness	laboratory test certificates from NATA-accredited laboratories.

DQO	Evaluation Criteria
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	 Adequate sampling coverage of all required EPL sample points.
Precision and accuracy for sampling and analysis	 Use properly trained and qualified field personnel and achieve laboratory QC criteria. Blind field duplicates to be collected at a minimum rate of 1 in 20 samples. RPD's to be less than 30% for inorganic and 50% for organic analyses. Rinsate samples not considered necessary as all PCoC measured by the lab were assumed to be present at the site. Disposable single use items used for the collection of samples.

5 Sampling Methodology

Field sampling was conducted by ALS Environmental (Wollongong) as commissioned by SCC on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following subsections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

5.1 Water Sampling

5.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime includes; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and one (1) leachate point. Sampling locations are illustrated in Figure 2 attached.

5.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. No LNAPL was reported on field sheets provided by ALS.

5.1.3 Sample Collection

Sampling is conducted independently by ALS Environmental under contract with SCC. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling was conducted in accordance with ALS sampling protocols.

5.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes with samples being collected using clear disposal bailers or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Post sampling all samples were sealed in laboratory-prepared sampling containers appropriate for the analysis.

Surface water samples were collected as 'grab samples' from the midpoint of the source at middepth.

Post flushing, leachate samples were sampled from a tap on the discharge line directly into purpose specific, pre preserved sample containers.

All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- > Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;
- Sample containers contain zero headspace;
- Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

5.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- > Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- > Temperature; and
- ➢ pH (Acidity).

5.2 Dust Deposition Sampling

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month periods at during each quarterly sampling event. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

5.3 Surface Methane Gas Monitoring

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was

below 10 km/hr. Testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in Figure 3. Transects were recorded using a Magellan SporTrak GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste.

5.4 Gas Accumulation Monitoring in Enclosed Structures

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in Figure 3. Any depressions or surface fissures away from the sampling grid were also investigated.

5.5 Laboratory Analysis

ALS, a NATA accredited laboratory, was contracted by SCC to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.6 Flare Monitoring

Landfill gases (LFG) are formed through bacterial action on emplaced waste and are a normal byproduct of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare was monitored, maintained and operated by LGI LTD. Copies of LFG reports for the relevant reporting period are included as Appendix G.

5.7 QAQC

The Quality Assurance and Quality Control (QA/QC) protocols for the sample program conducted by ALS are summarised in **Table 5-1**.

Table 5-1:	Summary of	of QAQC for	Sample Program
------------	------------	-------------	----------------

Protocol	Description
Sampling Team	Site personnel comprised only experienced and qualified environmental professionals trained in conducting site contamination investigations.

Sample Method	Samples obtained in laboratory prepared containers with preservatives appropriate for the required analysis.
Calibration	Equipment calibration certificates for each sampling event.
Sample Equipment	All sample equipment disposed or decontaminated between sample sites.
Field Screening	Visual and manual inspection of sample materials for potential contamination recorded on field sheets.
Chain of Custody Forms	All samples logged and transferred under appropriately completed Chain of Custody (COC) forms with Sample Receipts issued by the laboratory.
Blind Field Duplicate	At least one (1) blind field duplicate collected per 20 samples and submitted for analysis accompanied by COC forms.

6 Water Quality Results

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in Table 14-1 - Table 14-8 with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B, Appendix C, Appendix D and Appendix E.

6.1 Overflow Results

ENRS understands that four (4) overflow event occurred during the 2023-2024 annual monitoring period. Overflow water samples were collected by ALS at the SWP1 overflow point (EPA Point 1). The samples were analysed for pH and total suspended solids (TSS) as specified within Section 5 of EPL5984. Results generally reports concentrations of analytes below the SAC as listed in Table 6-1 below. NATA accredited laboratory certificates of analysis and chain of custody documentation are provided within Appendix C.

Sample Date	рН	TSS	Comment
20/12/2023	7.7	<5 mg/L	<sac satisfactory.<="" td=""></sac>
6/02/2024	7.6	<5 mg/L	<sac satisfactory.<="" td=""></sac>
18/03/2024	7.5	6 mg/L	<sac satisfactory.<="" td=""></sac>
7/06/2024	7.7	61	Minor exceedance for TSS above the SAC of 50mg/L.

Table 6-1: Summary of Overflow Events

6.2 Physical Indicators

6.2.1 Groundwater Depth

The measured depth to groundwater remained relatively consistent through the monitoring period with a low degree of variance. The Site was charactered by a shallow water table of generally less than 5.0 mbgl. The depth to water was measured between:

Quarter 1 December 2023: 2.19 mbgl (BH-18) and 21.2 mbgl (BH-15);

- Quarter 2 March 2024: 0.73 mbgl (BH-15) and 4.82 mbgl (BH-14);
- Quarter 3 June 2024: 0.75 mbgl (BH-15) to 4.33 mbgl (BH-18); and
- > Quarter 4 September 2024: 0.69 mbgl (BH-15) and 4.57 mbgl (BH-18).

6.2.2 Salinity

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2,200 μ S/cm (~1,500 mg/L). Marine waters may be characterised by an EC between 35,000 μ S/cm - 50,000 μ S/cm.

Groundwater

During the annual monitoring period, salinity in groundwater samples reported a relatively low degree of variance between each quarterly sampling event. The Site was generally characterised by freshwater EC values in the upgradient northern portions of the Sites, tending to become more saline towards Rocklow Creek, being a tidal river system. Results for groundwater were reported between 11 μ S/cm (BH18 Q1, BH19r Q2-3) and 994 μ S/cm (BH1c Q1). The results were all considered to be in range of historical values.

Surface Waters

Surface water samples collected from Rocklow Creek reported EC values between 67 μ S/cm (SW_Up Q1) and 11,200 μ S/cm (SWC_Down 2 Q2). EC values were expected to be elevated and fluctuate due to Rocklow Creek being a tidal system.

Results for onsite surface water location SWP1 was reported between 526 μ S/cm (Q1) and 1,340 μ S/cm (Q4) which was in range of historical data.

Leachate

Leachate salinity was reported between 3,520 μ S/cm (Q2) and 8,410 μ S/cm (Q1) which was in range of historical data. Salinity in leachate is expected to vary significantly with leachate concentration and stormwater dilution.

6.2.3 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field for surface waters only. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZG (2018) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm. DO is reported by the laboratory in mg/L which be converted to a percentage.

Surface Waters

Dissolved Oxygen within onsite surface water location SWP-1 ranged between 3.53mg/L or 38.6% (Q2) and . 12.0mg/L or 131.9% (Q1). The results were outside of the TV and consistent with historical data.

Results for DO within offsite surface water locations within Rocklow Creek ranged from 3.39 mg/L or 37.1% (SWC_ 2 Q2) and to 10.4 mg/L or 113.7% (SWC_2 Q4). The results were generally consistent with the historical data.

Leachate

Dissolved oxygen within leachate tank LP1 ranged between 1.27 mg/L or 13.9% (Q3) and 3.4 mg/L or 37.2% (Q1). The results were generally in range of the historical data.

6.2.4 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

Results pH in groundwater was reported between 6.6 (BH18 Q1, and BH12r, BH22 Q3) and 7.60 (BH18 Q2). The results were relatively neutral and within the SAC. No exceedances were recorded. The results were considered to be satisfactory and within range of historical data.

Surface Water

Results for pH in surface waters of Rocklow Creek reported neutral and constant conditions between 7.2 and 7.50. The results were within the SAC and range of historical values.

Leachate

The pH of leachate tank LP1 ranged between 8.10 and 8.2 which was within the range of historical values.

6.2.5 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces. TSS was measured for surface water sample points only.

Results for TSS in Rocklow Creek samples were generally reported below the LOR of <5mg/L. A result of 10mg/L was reported in sample SWC_Up (Q1). The results were within range of historical values.

Results for TSS in onsite SWP1 were reported between <5 mg/L and 12 mg/L which was within range of historical values.

6.3 Inorganic Analytes

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

6.3.1 Ammonia

Groundwater

Results for ammonia in groundwater over the monitoring period reported exceedances above the ecological stressor value of 0.2 mg/L, 95% TV of 0.91 mg/L and pH modified TV's in all samples. Results were considered to be significantly above the SAC and within range of the previous values.

Surface Water

Ammonia in onsite surface water dam SWP-1 ranged between 0.02 mg/L (Q4) and 2.1 mg/L (Q3) which was within range of historical values.

Ammonia concentrations in Rocklow Creek generally reported minor detections below the SAC. Minor concentrations above the ecological stressor value of 0.2 mg/L were reported in Quarter 1 and Quarter 2, and Quarter 4, up to a maximum result of 0.8mg/L (SWC_Down Q4). Results were below the 95% TV and pH modified SAC. The results were within range of historical data.

Leachate

Ammonia in leachate tank LP1 ranged between 0.73 mg/L (Q2) and 330 mg/L (Q1). Results were generally above the SAC which is charact eristic of untreated leachate. The results were within range of historical values.

6.3.2 Nitrate

Groundwater

Results for Nitrate in groundwater samples varied throughout the 2023-2024 monitoring period. Various exceedances above the SAC of 0.7 mg/L were reported in monitoring wells BH3, BH13, BH14, BH15, BH21. The maximum results was 52.3 mg/L (BH21 Q1). All other monitoring wells reported satisfactory results below the SAC. The results were within range of historical data.

Surface Water

Nitrate concentrations for all surface water samples for the 2023-2024 monitoring period were reported below the SAC and considered satisfactory.

Leachate

Nitrate concentrations for leachate tank LP1 were reported between the LOR of <0.1 mg/L and 8.53 mg/L (Q2). Increased concentrations of nitrate may be characterised of untreated leachate. The results were reported within range of historical values.

6.3.3 Nitrite

Results for nitrate in all groundwater, surface water and Leachate Tank LP1 were all reported below the SAC. The results were reported within range of historical values

6.4 Anions

6.4.1 Chloride

The results for chloride in groundwater across the Site varied throughout the 2023-2024 monitoring period. Results were reported between 11 mg/L (BH19r, Q3) and 994 mg/L (BH1c Q1). Onsite surface water dam SWP1 reported concentrations of chloride between 67 mg/L (Q1) and 183 mg/L (Q3). Chloride within Leachate Tank LP1 was reported between 591 mg/L (Q3) and 1,570 mg/L (Q1).

Elevated chloride results were measured within Rocklow Creek which may be characteristic of A marine tidal river system. In comparison, upgradient groundwater results reported slightly lower chloride concentrations. Results were generally consistent with historical data.

6.4.2 Fluoride

The results for fluoride in groundwater, surface water and leachate tank were all reported below the SAC and were generally consistent with the historical data.

6.4.3 Sulphate

Results for sulphate in groundwater generally reported satisfactory results that were in range of the historical data. Higher sulphate results were reported in Rocklow Creek, which may be characteristic of a marine tidal river system.

6.4.4 Total Alkalinity

Surface Water

Results for total alkalinity were consistent with historical data and considered to be satisfactory.

6.4.5 Bicarbonate Alkalinity

Bicarbonate alkalinity in groundwaters were consistent with historical data and considered to be satisfactory for the 2023-2024 monitoring period.

6.5 Metals

6.5.1 Manganese (Total Mn)

Groundwater

Results for manganese in all groundwater, surface water and leachate tanks samples were reported below the 95% TV of 1.9 mg/L. Results were reported between 0.03 mg/L (BH19r Q3) and 0.863 mg/L (BH12r Q2). The results were generally consistent with historical data.

6.5.2 Iron (total Fe)

Total iron was measured in surface water and leachate tank LP1 only. Results for total iron ins surface waters were reported between 0.11mg/L (SWP1 Q3) and 1.48 (SWC_Down Q1). Total iron in leachate tank LP1 was reported between 4.06 mg/L (Q4) and 7.49 mg/L (Q3) The results were generally consistent with historical data.

6.5.3 Iron (Dissolved Fe)

Concentrations of dissolved iron in groundwater were reported results between the LOR of <0.05 mg/L and 44.6 mg/L (BH22 Q1). The results were generally consistent with the historical data.

6.6 Calcium

Results for calcium in groundwater for the 2023-2024 monitoring period reported results between 46 mg/L (BH19r Q3) and 237 mg/L (BH21 Q1).

Results for calcium in Rocklow creek surface water samples were reported between 52 mg/L (SWC_Up Q1) and 286 mg/L (SWC_Down 2 Q1).

Results for calcium in onsite dam SWP1 were reported between 32 mg/L (Q1) and 72 mg/L (Q4). Calcium in leachate tank LP1 was reported between 51 mg/L (Q1) and 96 mg/L (Q2).

6.7 Potassium

Results for potassium in groundwater, surface water and leachate tank LP1 were all reported within range of historical data.

6.8 Organic Analytes

6.8.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater. However, high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

Results for TOC in groundwater and surface water samples were generally low and consistent with historical data.

TOC in leachate tank LP1 was reported between 79 mg/L (Q4) and 323 mg/L (Q3) which was generally consistent with historical data.

7 Dust Gauge Results

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month for each quarterly sampling event. Sampling was conducted in general accordance with AS3580.10.1. Dust gauge locations are provided in **Figure 14-1** attached. A summary of the results is provided in **Table 7-1** below.

Table 7-1: 5	Summarv	of Dust	Gaude	Results
	Janniary		Cuugo	rtoouno

Quarter	Sample ID	Guideline Criteria (g/m2/month)	Total Insolvable Matter (g/m2/month)	Comment
Quarter 1	DDG1		0.8	Below SAC
2/11/2023 -	DDG2		0.8	Below SAC
1/12/2023	DDG3		1.4	Below SAC
	DDG4		8.7	Above SAC
Quarter 2	DDG1		0.5	Below SAC
01/02/2024	0002		0.8	Below SAC
-04/03/2024	DDG3		1.5	Below SAC
	DDG4		5.3	Above SAC
Quarter 3	DDG1	4	0.8	Below SAC
3/05/2024 -	DDG2		0.1	Below SAC
3/06/2024	DDG3		0.2	Below SAC
	DDG4		5.1	Above SAC
Quarter 4	DDG1		0.4	Below SAC
02/08/2024	DDG2		0.5	Below SAC
-03/09/2024	DDG3		5.9	Above SAC
	DDG4		3.8	Below SAC

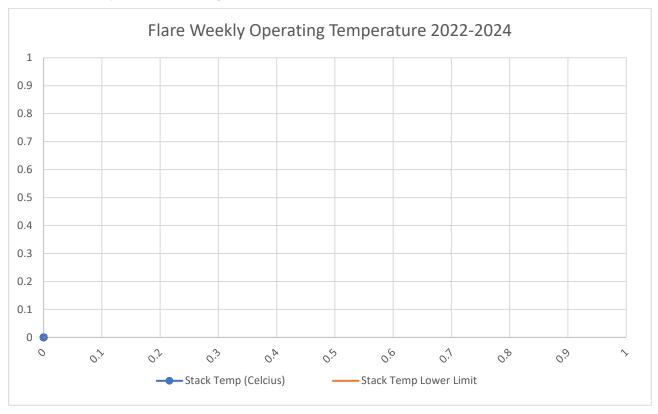
Results for depositional dust sampling during the 2023-2024 Q1-Q4 monitoring periods generally reported levels of dust below the adopted assessment criteria of 4 g/m²/month. However, four (4) exceedances were recorded across the annual period in sample locations DDG3 and DDG4 above the SAC of 4 g/m²/month. The exceedances ranged between 5.1-8.7 g/m²/month and were considered to be relatively minor. It is recommended that client reviews the potential sources of excess dust in areas proximal to DDG3 and DDG4 locations and continues to monitoring in accordance with EPL 5984.

8 Methane Monitoring Results

8.1 Surface Gas Methane

The surface gas monitoring for the 2023-2024 annual monitoring period DID NOT detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in **Appendix D**.

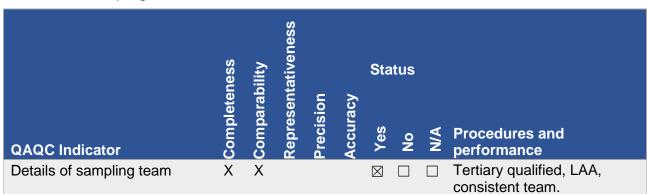
8.2 Gas Accumulation Monitoring in Enclosed Structures


The internal methane testing for enclosed structures within 250m of the landfill during the 2023-2024 annual monitoring period DID NOT detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory.

9 Flare Operations Results

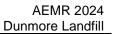
Weekly average operating temperatures for the flare were supplied by LGI and displayed typical variation associated with a continuous process. Results are summarised in Chart 1 below. LGI Gas Flare reports included as Appendix G.

Weekly average operating temperatures for the 2023-2024 annual monitoring supplied by LGI displayed an average temperature of 567.9 degrees Celsius. A drop in stack temperature below the lower operation limit of 760 degrees as specified within EPL 5989 was detected on 21/12/2023 and continued until 9/08/2024. An increase in temperature above the minimal operational limit within Q4 monitoring period. Further information is documented within the LGI reports in Appendix G.

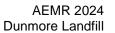

Chart 1: Weekly Flare Operating Temperatures October 2022 - September 2024

10 Quality Assurance/Quality Control Data Evaluation (QAQC)

10.1 Field Sampling QAQC


ENRS understands that the sample program was completed in general accordance with the ALS standard operation procedures (SOP) which references current industry guidelines.

It was understood that the QAQC procedures and indicators for field sampling procedures within the SOP included items summarised in Table 10-1.


Table 10-1: Sampling QAQC Procedures

Notes: Data sourced from the LGI reports provided in Appendix G.

	Completeness	Comparability	Representativeness	Precision	Accuracy		itus		
QAQC Indicator	Com	Com	Repr	Prec	Accı	Yes	No	N/A	Procedures and performance
Reference to sampling plan/method, including any deviations from it – sampling and analysis quality plan	Х								Sampling in accordance with the SOP.
Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)				Х	Х				Field sampling records and chain of custody completed in full.
Decontamination procedures carried out between sampling events			X	Х	X				Equipment such as decontaminated between samples by washing with phosphate free detergent followed by rinsing with potable water. Re-use of sampling equipment was avoided, where possible. Single use deposable sampling equipment was the preferred method.
Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos.		X	X						Sampling field sheets were used as required.
Chain of custody fully identifying – for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s) (where applicable)	X	Х							COC's completed in full.

	Completeness	Comparability	Representativeness	ion	acy	Sta	itus		
QAQC Indicator	Comp	Comp	Repre	Precision	Accuracy	Yes	No	N/A	Procedures and performance
Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)				Х	X				Field QAQC analysed for chemical samples – field duplicate.
Sample splitting techniques – subsampling, containers/preservation (ensure unique ID for subsequent samples provided)			Х						Samples obtained in laboratory prepared sample containers appropriate for the analytes.
Statement of duplicate frequency			Х	Х		\boxtimes			Blind field duplicates collected at 1/20 frequency
Background sample results	Х	Х				\boxtimes			Reviewed against previous results from the last 3 years.
Field instrument calibrations (when used)				Х	Х			\boxtimes	Yes field equipment was calibrated prior to use.
Sampling devices and equipment	Х	Х				\boxtimes			Manual sampling with decontamination procedures and disposable equipment.
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							COC's completed in full, final records from NATA laboratory attached to CoAs.

10.2 Laboratory QAQC

The QAQC procedures and indicators for laboratory analysis procedures are summarised in Table 10-2.

Table 10-2: Laboratory QAQC procedures

	etenes	rability	entativ	uo	cy	Status			
QAQC Indicator	Completenes	Comparability	Representativ	Precision	Accuracy	Yes	No	N/A	Procedures and performance
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							All samples were logged and transferred under appropriately completed Chain of Custody Forms.
Record of holding times and a comparison with method specifications	Х	Х							Records documented in the laboratory QAQC report attached to CoA.
Analytical methods used, including any deviations	Х	Х				\boxtimes			Recorded in the CoA.
Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation	Х			Х		\boxtimes			Recorded in the CoA.
Laboratory performance for the analytical method using inter- laboratory duplicates		Х			Х				Records documented in the laboratory QAQC report attached to CoA.
Surrogates and spikes used throughout the full method process, or only in parts. Results are corrected for the recovery	Х	Х				\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
A list of what spikes and surrogates were run with their recoveries and acceptance criteria (tabulate)		Х			Х				Records documented in the laboratory QAQC report attached to CoA.
Practical quantification limits (PQL)	Х	Х				\boxtimes			Recorded in the CoA. PQLs <sac.< td=""></sac.<>
Reference laboratory control sample (LCS) and check results	Х					\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory duplicate results (tabulate)	Х				Х				Records documented in the laboratory QAQC report attached to CoA.
Laboratory blank results (tabulate)	Х				Х	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Results are within control chart limits	Х								Records documented in the laboratory QAQC report attached to CoA.

	es	ility	ativ			Status			
QAQC Indicator	Completenes	Comparabilit	Representativ	Precision	Accuracy	Yes	No	N/A	Procedures and performance
Evaluation of all quality assurance/control information listed above against the stated data quality objectives, including a quality assurance/control data evaluation	X	Х	Х	X	X				Records documented in the laboratory QAQC report attached to CoA.

10.3 QAQC Discussion

A summary of the Data Quality performance and evaluation is summarised in Table 10-3 below:

Table 10-3: QAQC and Data Evaluation Summary

Objective	Performance	Status
Documentation completeness	 Completion of field records; Chain of Custody (COC) documentation; Calibration certificates for equipment; NATA Laboratory Sample Receipt Notification (SRN); and NATA laboratory Certificate of Analysis (COA). Sample Location Plans. Sample field sheets. 	✓
Precision & accuracy for sampling & analysis	 Use only trained and qualified field personnel; Calibration certificates for field equipment; Appropriate sampling and field techniques; Decontamination procedures; Achieve laboratory QC criteria; and Achieve QAQC requirements for RPDs and Recovery 	√
Identify Anomalies	 No elevated results not expected by the CSM; No labelling or sample management errors; No laboratory analyses or reporting errors 	✓
DATA completeness	 Sampling density comparison meets NSW EPA (1995) 'Sampling Design Guidelines' for or all potential contaminants of concern at all areas of environmental concern; and Systematic and judgemental sampling to provide sufficient data representative of all AECs. 	v
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of sample media; Use of NATA certified laboratory using NEPM endorsed procedures; and Comparison with previous site information, if any. 	√

Objective	Performance	Status
Data representative ness	 Adequate sampling coverage at all points listed in the EPL. Selection of representative samples from each sampling location; & Analysis for PCoC. Achieve laboratory QC criteria. Achieve QAQC requirements for RPDs and Recovery. 	~

The laboratory was NATA accredited, and the Practical Quantitation Limits (PQL) also referred to as Limits of Reporting (LOR) were within the acceptable levels for the assessment criteria. Laboratory certificates of analysis provided in **Appendix C** indicate that for the samples collected during the scope of works, sampling techniques, transport procedures and laboratory analysis were satisfactory

In summary, the QA/QC indicators all complied with the ALS standards or showed variations that would have no significant effect on the quality of the data or the conclusions of this assessment. Based on the following conclusions it is therefore determined that, for the purposes of this study, the QA/QC results are valid, and *the quality of the data is acceptable for use in this assessment:*

- > The data was representative of site conditions;
- The data was complete with comprehensive records available from all field work undertaken, and all areas of concern sampled and analysed;
- The data was comparable for samples analysed at different times, and consistent with field observations; and
- The data was precise and accurate based on the laboratory achievement of relevant quality control criteria.

11 Annual Environmental Assessment

11.1 Monitoring Point Summary

Based on the results of field measurements and NATA laboratory results conducted by ALS, the following summaries were noted for the Annual 2023 - 2024 monitoring period;

- Groundwater monitoring wells located across the site reported elevated concentrations of key indicators of leachate above the site assessment criteria, specifically ammonia. Groundwater wells were located across the Site including upgradient, adjacent to and downgradient of the landfill cells. The elevated results were generally consistent with the available historical data;
- The leachate tank LP1 reported elevated results of key leachate analytes which was considered to be characteristic of untreated leachate;
- > Onsite surface water dam SWP1 generally reported results within the Site Assessment Criteria;
- Offsite surface water of Rocklow Creek generally reported conditions characteristic of a tidal river system. Concentrations of key analytes associated with landfill leachate within the creek were generally reported below adopted the ecological protection trigger values. However, concentrations of ammonia were reported above the ecological stressor value on multiple occasions;
- Dust monitoring reported minor exceedances at the DDG3 and DDG4 locations throughout the annual monitoring period.

- Surface gas monitoring did not detect any methane above the allowable limit across the site surface transects or within onsite buildings;
- Fout (4) overflow events occurred at surface water dam SWP1 during the 2023-2024 annual monitoring period. Events occurred on the 20/12/2023, 06/02/2024, 18/03/2024 and 07/06/2024. Results were generally reported below the assessment criteria. A single exceedance during an for total suspended solids (TSS) was reported for the 7/06/2024 overflow event; and
- Review of the gas flare reports prepared by LGI reported gas flare temperatures below the minimum requirement of 760 degrees Celsius as specified within EPL 5984. A low temperature was measured throughout the Q1, Q2 and Q3 periods. Temperatures increased above the minimum operating temperature during the Q4 period.

11.2 Environmental Management

11.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

11.3 Environmental Safeguards

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and re-lining).

Access tracks to sampling points should be inspected and maintained prior to each quarterly sampling events.

Continue to review surface water and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek.

Ensure the integrity of the landfill cap is maintained. This is to avoid additional surface infiltration during rainfall events and the release of landfill gasses. Continue to monitor surface methane gas in order to assess the capping integrity of the landfill cells.

11.4 Monitoring Program

The Site's EPL's and monitoring regime should be reviewed annually by SCC and the NSW EPA.

Review of the 2023-2024 Annual monitoring results indicated no significant change in environmental conditions at the Site. Key indicators of leachate were reported within the groundwater monitoring locations across the Site. Future sampling events should continue to monitor the key indicators of leachate within ground and surface waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the sample holding time.

12 Conclusions

Based on the findings obtained during the 2023-2024 annual monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. Depth to groundwater was generally <5mBGL. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the annual monitoring period reported exceedances above the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater wells across the Site. The analytes were considered to be key indicators of leachate. The exceedances were within range of historical values with no significant changes in concentrations;
- Offsite sample locations within Rocklow Creek generally reported concentrations of analytes below the SAC. However, concentrations of ammonia were reported above the ecological stressor value on multiple occasions;
- Surface gas methane monitoring of the landfill cap reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. Minor exceedances were reported in dust gauges DDG3 and DDG4 through the annual monitoring period. The potential source of the dust should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;
- Gas Flare temperatures were reported below the required KPI of 760 degrees Celsius throughout the first three (3) quarters. An increase in temperature was reported within the fourth quarter;
- Based on the data reviewed for the 2023-2024 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

13 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

- CRC Care (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater.
- DEC NSW. (2007). Guidelines for the Assessment and Management of Groundwater Contamination.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, May.

NSW EPA. (2014). Waste Classification Guidelines. Part 1 Classifying Waste.

NSW EPA. (2020). Guidelines for consultants reporting on contaminated land.

- NSW EPA (2022) Approved methods for the sampling and analysis of water pollutants in NSW
- NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling design part 1: Application .
- NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling Design Part 2: Interpretation.
- WA DOH. (2009). *Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia.* Perth, WA: Western Australia Department of Health.
- WA DOH. (2021). *Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia.* Perth, WA: Western Australia Department of Health.

Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales

NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984

NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903

NSW Government (1997). Protection of the Environment Operations Act.

NSW Government (2005). Protection of the Environment (Waste) Regulation.

NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B – Waste Landfills.

ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.

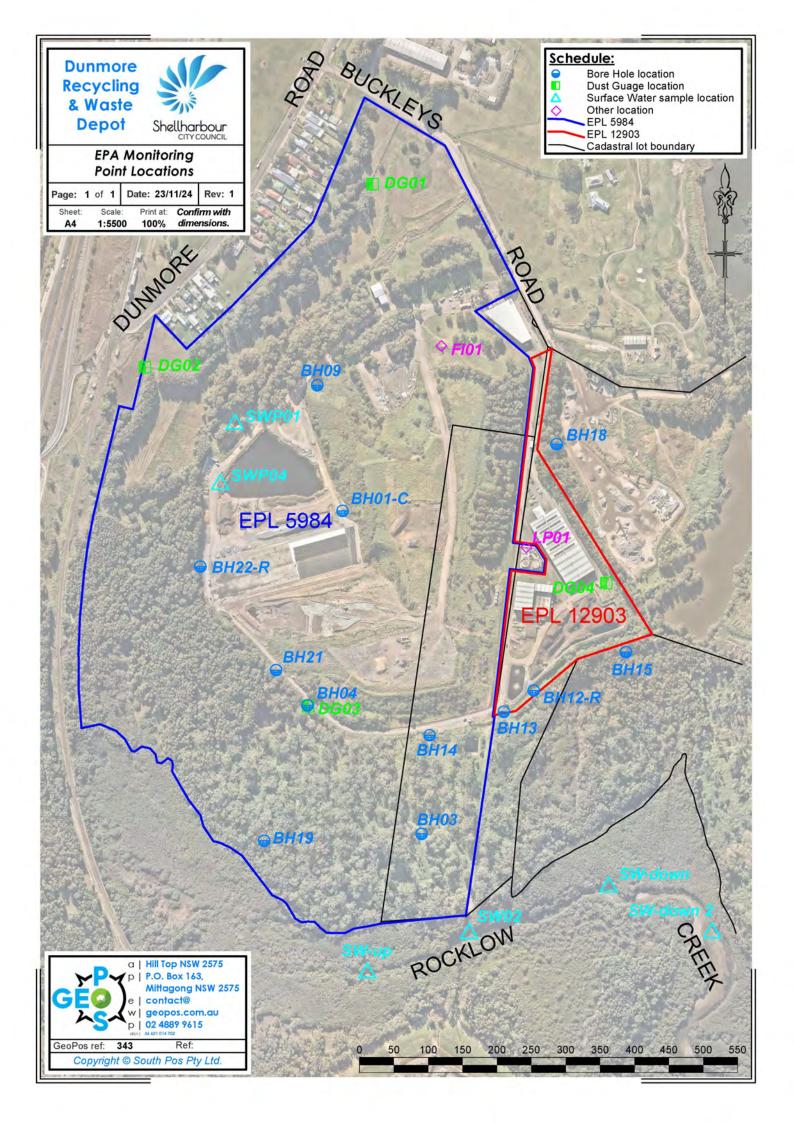
ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).

14 Limitations

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to Site.

ENRS derived the data in this report primarily from visual inspections, and, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.


The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of Site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.

FIGURES

ENRS	Client:	Shellharbour City Council	Drawn:	PL	Figure:	3
Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Surface Gas
Tel: 02 4448 5490 Fax: 02 90374708		44 Buckleys Rd, Dunmore, NSW,	Status:	Rev 1		Sample
projects@enrs.com.au www.enrs.com.au		2529				transects

TABLES OF RESULTS

								Q	uarterly V					I Conce ember 202					te Depot											
GILs -Trigger Values for F	Freshwater (Protection of 9	5% of Species) ^A			-		-	-		1.9		-	-	0.9 (pH 8)	-	0.7	-	-	-	-	-		-		6.5 - 8.5	2200			-	
GILs -Trigger Values for M	Marine Water (Protection of	95% of Species) ^A				-		-				-	-	0.91 (pH 8)	-			-	-				-				-		•	
Australian Drinking Water	r Guidelines (2018) ^C			Health		-				0.5			1.5		3	50								-	6.5 - 8.5		-	-	•	
				Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Total Insoluble Matter	Comments
				Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01		mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	pH 0.01	μS/cm 1	°C 0.1	mbgl 0.01	mbgl 0.1	-
EW2305322001	BH1c	Groundwater	3	Dec 2023	994	125			220	0.11		12.00	0.3	348.00	0.01	< 0.01	153	2,780	2,780	< 20					7.00	7,840	25.0	3.19		-
EW2305322002	BH3	Groundwater	5	Dec 2023	118	146			26	0.09		1.39	< 0.1	9.99	0.24	14.00	11	358	358	120					7.10	1,110	18.0	3.12		-
EW2305322003	BH4	Groundwater	6	Dec 2023	64	125			22	0.12		3.15	< 0.1	2.42	0.01	0.36	11	367	367	103					7.30	894	18.4	4.25		-
EW2305322004	BH9	Groundwater	18	Dec 2023	387	186			83	0.85		0.12	0.4	173.00	< 0.01	< 0.01	100	1,800	1,800	< 20					7.20	3,620	18.3	3.19		-
EW2305322005	BH12r	Groundwater	17	Dec 2023	200	181			28	0.45		10.20	0.2	4.08	0.02	0.60	24	523	523	157					6.90	1,580	20.6	4.30		-
EW2305322006	BH13	Groundwater	10	Dec 2023	335	211			28	0.47		2.19	0.2	8.09	0.01	0.86	40	897	897	55					6.80	2,250	21.3	4.22		-
EW2305322007	BH14	Groundwater	11	Dec 2023	62	139			16	0.18		0.65	0.4	1.84	< 0.01	0.08	17	550	550	24					6.80	1,080	21.0	4.62		-
EW2305322008	BH15	Groundwater	7	Dec 2023	408	112			130	0.24		8.19	0.2	6.35	0.02	< 0.01	34	486	486	300					7.00	2,120	17.4	21.20		-
EW2305322010	BH18	Groundwater	25	Dec 2023	11	62			8	0.29		2.46	0.2	1.58	< 0.01	< 0.01	14	273	273	< 1					6.60	459	19.1	2.19		
EW2305322009	BH19r	Groundwater	16	Dec 2023	34	89			42	0.06		0.74	0.1	2.42	< 0.01	< 0.01	13	329	329	42					7.50	678	18.2	4.54		-
EW2305322011	BH21	Groundwater	23	Dec 2023	238	237			41	0.12		< 0.05	0.2	0.07	0.78	52.30	27	528	528	227					6.90	2,170	21.0	3.00		-
EW2305322012	BH22	Groundwater	24	Dec 2023	77	156			13	0.34		44.60	0.4	4.68	< 0.01	0.06	33	335	335	345					6.80	1,360	18.3	2.32	_	-
EW2305324001	SWP1	Surfacewater	1	Dec 2023	67	32	12	59	10	0.36	0.37	0.11	0.3	0.05	< 0.01	0.01	18	162	162	15	3.81		12	4.80	7.30	526	23.8		_	-
EW2305324003	SWC_up	Surfacewater	20	Dec 2023	1,230	52	77	617	26	0.07	1.09	0.12	0.3	0.20	< 0.01	0.03	11	120	120	162	6.44		10	10.00	7.20	3,980	21.5		_	-
EW2305324002	SWC_2	Surfacewater	19	Dec 2023	1,370	60	93	749	32	0.08	1.23	0.12	0.3	0.25	< 0.01	0.08	10	120	120	186	5.24		7	10.30	7.20	4,520	21.3		_	-
EW2305324004	SWC_down	Surfacewater	21	Dec 2023	1,480	66	106	864	37	0.08	1.48	0.09	0.4	0.27	< 0.01	0.09	10	121	121	213	6.60		6	10.30	7.20	5,220	22.0			-
EW2305324005	SWC_down_2	Surfacewater	22	Dec 2023	1,470	64	106	858	36	0.08	1.17	0.09	0.4	0.25	< 0.01	0.07	10	120	120	195	5.81		7	10.50	7.20	5,110	21.8		_	-
EW2305326001	Leachate Storage Tank LP1	Leachate	2	Dec 2023	1,570	51			355	1.35	5.08		0.3	330	5.76	< 0.20	142	1,770	1,900	< 10	3.40	41.3			8.60	8,410	24.4			-
<u>.</u>																														

s -Trigger Values for	Freshwater (Protection of 9	5% of Species) ^A			-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)	_	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	
	Marine Water (Protection of				-	-		-	-	-				0.91 (pH 8)		-	-	-	-		-	-	-	-	-	-		-	
stralian Drinking Wate	•			Health	-					0.5			1.5	-	3	50							-	-	6.5 - 8.5			-	
				Aesthetic	250			180	-	0.1	0.3	0.3		0.5		-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	H	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
				Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	•
EW2400913001	BH1c	Groundwater	3	Mar 2024	971	123			211	0.12		12.40	0.3	319.00	< 0.01	< 0.01	178	2,700	2,700	< 1					7.20	7,610	25.0	3.10	-
EW2400913002	BH3	Groundwater	5	Mar 2024	153	159			29	0.15		2.01	< 0.1	17.40	0.08	9.65	19	459	459	164					7.30	1,450	18.7	3.20	-
EW2400913003	BH4	Groundwater	6	Mar 2024	77	148			24	0.16		4.25	0.1	4.20	< 0.01	< 0.01	12	388	388	130					7.40	1,030	18.9	4.50	-
EW2400913004	BH9	Groundwater	18	Mar 2024	436	198			84	0.86		0.18	0.5	133.00	0.02	0.46	73	1,920	1,920	< 1					7.30	3,890	18.7	3.16	-
EW2400913005	BH12r	Groundwater	17	Mar 2024	180	196			28	0.53		10.20	0.2	4.28	< 0.01	0.11	24	548	548	138					6.90	1,620	21.4	4.40	-
EW2400913006	BH13	Groundwater	10	Mar 2024	295	198			25	0.51		3.71	0.2	7.13	< 0.01	2.03	38	829	829	48					6.70	2,110	21.9	4.35	-
EW2400913007	BH14	Groundwater	11	Mar 2024	166	198			21	0.23		0.41	0.4	1.44	0.03	5.28	25	610	610	47					6.70	1,500	21.6	4.82	-
EW2400913008	BH15	Groundwater	7	Mar 2024	204	86			103	0.16		4.34	0.2	9.00	0.02	0.05	33	475	475	181					7.10	1,620	19.7	0.73	-
EW2400913009	BH18	Groundwater	25	Mar 2024	37	95			48	0.07		0.49	0.1	2.36	< 0.01	0.02	11	345	345	46					7.60	714	18.9	4.18	-
EW2400913010	BH19r	Groundwater	16	Mar 2024	11	62			9	0.08		1.24	0.2	0.92	< 0.01	< 0.01	11	242	242	< 1					6.70	426	20.9	2.22	-
EW2400913011	BH21	Groundwater	23	Mar 2024	302	125			16	0.46		1.02	0.3	4.08	< 0.01	0.01	35	769	769	155					7.20	2,280	22.4	3.04	-
EW2400913012	BH22	Groundwater	24	Mar 2024	200	116			22	0.13		16.50	0.5	7.12	< 0.01	< 0.01	28	486	486	218					7.30	1,680	19.5	2.41	-
EW2400977001	SWP1	Surfacewater	1	Mar 2024	112	41	22	122	10	0.48	0.39	< 0.05	0.3	0.07	< 0.01	< 0.01	21	289	289	27	3.53		9	4.60	7.40	871	21.9		-
EW2400977003	SWC_up	Surfacewater	20	Mar 2024	8,720	235	621	5,000	194	0.33	0.29	0.10	0.4	0.23	0.02	0.01	10	168	168	1,260	4.20		< 5	2.50	7.20	25,200	19.4		-
EW2400977002	SWC_2	Surfacewater	19	Mar 2024	10,000	264	715	5,770	223	0.26	0.24	0.07	0.7	0.22	0.02	< 0.01	10	168	168	1,450	3.39		< 5	2.50	7.20	28,800	19.7		-
EW2400977004	SWC_down	Surfacewater	21	Mar 2024	10,300	273	694	5,670	217	0.24	0.26	< 0.05	0.5	0.23	0.01	0.01	9	168	168	1,420	5.16		< 5	2.50	7.20	30,000	20.9		-
EW2400977005	SWC_down_2	Surfacewater	22	Mar 2024	11,200	286	781	6,340	244	0.20	0.17	< 0.10	0.4	0.24	0.01	< 0.01	8	161	161	1,540	4.25		< 5	2.10	7.20	33,000	20.6		-
EW2400975001	Leachate Storage Tank LP1	Leachate	2	Mar 2024	744	96			873	0.67	4.20		0.2	1	0.24	8.53	166	765	830	134	3.32	37.6			8.60	3,520	22.4		-

								Qu	arterly W					oncen 2024 : Du				/aste Dep	oot										
GILs -Trigger Values for I	Freshwater (Protection of 9	5% of Species) ^A			-	-	-		-	1.9	-	-	-	0.9 (pH 8)	-	0.7	-	-	-	-		-	-	-	6.5 - 8.5	2200	-	-	
GILs -Trigger Values for I	Marine Water (Protection of	f 95% of Species) ^A			-	-	-		-	-	-		-	0.91 (pH 8)	-	-	-	-				-	-	-	-	-	-	-	
Australian Drinking Wate	r Guidelines (2018) ^C			Health	-	-		-	-	0.5	-	-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
				Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
			•	Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	-
EW2402552001	BH1c	Groundwater	3	Jun 2024	989	124			206	0.11		12.40	0.4	352.00	0.05	< 0.10	183	2,570	2,570	261					7.00	7,500	25.0	2.75	-
EW2402552002	ВНЗ	Groundwater	5	Jun 2024	115	98			30	0.05		0.20	0.2	6.56	0.02	4.83	14	282	282	69					7.40	759	18.4	2.83	-
EW2402552003	BH4	Groundwater	6	Jun 2024	120	117			23	0.12		2.65	0.1	3.63	< 0.01	0.06	11	350	350	57					7.20	842	19.0	4.15	-
EW2402552004	BH9	Groundwater	18	Jun 2024	528	218			75	0.73		2.95	0.5	96.80	0.01	0.02	69	1,510	1,510	146					6.90	3,790	17.7	2.75	-
EW2402552005	BH12r	Groundwater	17	Jun 2024	230	184			32	0.43		4.57	0.2	2.50	0.05	1.20	30	574	574	84					6.60	1,860	21.3	4.04	-
EW2402552006	BH13	Groundwater	10	Jun 2024	206	182			25	0.44		2.08	0.2	14.00	0.01	5.68	35	652	652	85					6.80	1,900	22.0	3.90	-
EW2402552007	BH14	Groundwater	11	Jun 2024	158	160			22	0.21		0.92	0.4	1.50	0.24	19.30	33	464	464	50					6.80	1,450	21.6	4.22	-
EW2402552008	BH15	Groundwater	7	Jun 2024	147	54			89	0.12		3.81	0.2	7.15	< 0.01	< 0.01	29	347	347	60					6.90	1,090	16.6	0.75	-
EW2402552009	BH18	Groundwater	25	Jun 2024	37	92			42	0.05		0.53	0.2	1.24	< 0.01	0.04	12	326	326	38					7.40	683	18.7	4.33	-
EW2402552010	BH19r	Groundwater	16	Jun 2024	11	46			7	0.03		0.54	0.2	0.54	< 0.01	< 0.01	9	181	181	< 10					6.90	328	20.5	1.99	-
EW2402552011	BH21	Groundwater	23	Jun 2024	299	124			14	0.45		2.57	0.4	4.07	< 0.01	< 0.01	31	729	729	126					7.20	2,230	22.3	2.70	-
EW2402552012	BH22	Groundwater	24	Jun 2024	162	84			7	0.33		21.80	0.3	5.41	< 0.01	< 0.01	38	356	356	52					6.60	1,160	18.9	2.06	
EW2402546001	SWP1	Surfacewater	1	Jun 2024	183	70	44	204	11	0.04	0.11	< 0.05	0.5	2.10	0.14	0.45	19	316	316	233	4.16		< 5	3.40	7.50	1,120	12.6		-
EW2402546003	SWC_up	Surfacewater	20	Jun 2024	2,430	69	161	1,330	52	0.07	0.88	0.07	0.3	0.12	0.02	0.34	8	108	108	346	8.89		9	11.30	7.40	5,890	13.5		-
EW2402546002	SWC_2	Surfacewater	19	Jun 2024	2,780	76	180	1,500	59	0.07	0.86	0.06	0.3	0.16	0.01	0.41	8	109	109	391	8.81		< 5	10.60	7.50	6,580	13.3		-
EW2402546004	SWC_down	Surfacewater	21	Jun 2024	5,440	136	371	3,140	116	0.06	0.61	< 0.05	0.4	0.10	0.02	0.27	8	110	110	810	8.70		< 5	8.30	7.40	13,100	13.6		-
EW2402546005	SWC_down_2	Surfacewater	22	Jun 2024	6,170	155	442	3,630	134	0.06	0.54	< 0.05	0.5	0.10	0.01	0.25	7	109	109	940	7.78		< 5	7.60	7.40	15,200	13.7		-
EW2402550001	Leachate Storage Tank LP1	Leachate	2	Jun 2024	591	90			842	0.59	7.49		0.2	60	< 0.10	< 0.10	323	973	973	< 10	1.27	12.9			8.20	3,720	14.2		-

.s -Trigger Values for F	reshwater (Protection of 9	5% of Species) ^A			-	-		-		1.9	-	-	-	0.9 (pH 8)	-	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	
	larine Water (Protection of										-			0.91 (pH 8)	-		-					-				-		-	
stralian Drinking Water				Health		-	-	-		0.5	-	-	1.5		3	50	-	-			-	-			6.5 - 8.5			-	
				Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5				-		250	-	-		5	6.5 - 8.5		-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Suffate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
	1			Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	-
EW2404038001	BH1c	Groundwater	3	Sep 2024	787	113			203	0.09		9.22	0.4	28.30	< 0.01	< 0.10	163	2,800	2,800	< 10					7.00	7,090	25.2	3.20	-
EW2404038002	ВНЗ	Groundwater	5	Sep 2024	120	133			40	0.14		2.55	0.2	25.40	0.13	1.21	22	434	434	224					7.40	1,220	17.7	3.18	
EW2404038003	BH4	Groundwater	6	Sep 2024	26	95			26	0.09		1.81	0.1	2.84	0.01	0.05	8	339	339	110					7.30	690	18.3	4.40	-
EW2404038004	BH9	Groundwater	18	Sep 2024	561	209			64	0.42		4.87	0.5	65.20	< 0.01	< 0.01	47	1,270	1,270	351					7.00	3,650	17.8	3.22	-
EW2404038005	BH12r	Groundwater	17	Sep 2024	290	174			30	0.45		9.49	0.2	5.99	< 0.01	0.28	74	654	654	84					6.80	1,920	20.3	4.35	
EW2404038006	BH13	Groundwater	10	Sep 2024	280	168			26	0.46		2.03	0.2	16.70	0.03	5.93	37	785	785	107					6.80	2,050	21.9	4.29	
EW2404038007	BH14	Groundwater	11	Sep 2024	189	168			20	0.25		1.38	0.6	2.03	0.04	6.74	23	594	594	97					6.80	1,580	21.0	4.72	
EW2404038008	BH15	Groundwater	7	Sep 2024	169	130			98	0.23		5.32	0.2	9.79	0.02	6.72	19	325	325	551					7.00	1,610	14.9	0.69	
EW2404038009	BH18	Groundwater	25	Sep 2024	23	86			50	0.05		0.71	0.1	1.21	0.01	< 0.01	12	359	359	54					7.40	667	17.8	4.57	
EW2404038010	BH19r	Groundwater	16	Sep 2024	18	49			12	0.03		0.48	0.2	0.74	< 0.01	< 0.01	12	246	246	< 10					6.80	402	18.5	2.28	-
EW2404038011	BH21	Groundwater	23	Sep 2024	290	116			16	0.48		1.25	0.4	4.43	< 0.01	< 0.01	29	799	799	197					7.20	2,170	21.0	3.16	-
EW2404038012	BH22	Groundwater	24	Sep 2024	195	101			15	0.07		8.85	0.6	3.81	< 0.01	< 0.01	30	492	492	181					7.00	1,450	17.2	2.69	-
EW2404020001	SWP1	Surfacewater	1	Sep 2024	176	72	47	211	9	0.04	0.16	< 0.05	0.6	0.02	< 0.01	0.02	19	370	391	266	12.00		< 5	4.00	8.30	1,340	16.0		-
EW2404020003	SWC_up	Surfacewater	20	Sep 2024	3,160	87	216	1,810	70	0.07	0.29	< 0.05	1.0	0.12	0.01	0.11	6	84	84	457	9.42		< 5	5.30	7.30	8,660	14.8		-
EW2404020002	SWC_2	Surfacewater	19	Sep 2024	3,260	88	214	1,860	71	0.07	0.28	< 0.05	1.0	0.15	0.01	0.11	6	86	86	464	10.40		< 5	4.80	7.50	8,880	14.7		-
EW2404020004	SWC_down	Surfacewater	21	Sep 2024	5,360	143	372	3,100	121	0.07	0.22	< 0.05	0.9	0.80	0.02	0.08	7	127	127	667	8.37		< 5	4.00	7.40	14,800	15.1		-
EW2404020005	SWC_down_2	Surfacewater	22	Sep 2024	6,770	181	475	4,050	156	0.07	0.21	< 0.05	0.9	0.42	0.01	0.08	6	127	127	1,040	8.66		< 5	3.60	7.40	18,300	14.6		-
EW2404022001	Leachate Storage Tank LP1	Leachate	2	Sep 2024	648	91			783	0.43	4.06		0.1	64	< 0.10	< 0.10	79	1,020	1,020	< 10	3.05	30.2			8.40	3,650	15.2		
	·			· · ·					I				·		·				•	•	•	I							

				pН		Assessme	nt Criteria	Result	
Ammonia Resu	Its comapred ANZAC	against the pH Modified T C (2000) Table 8.3.7		pH (lab)	Ecological Stressor Value	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
	1		Concentrations - PQL	0.1	-	-	-	0.01	
Lab Report No.		Sample ID.	Date	pН	mg/L	mg/L	mg/L	mg/L	
2.38		BH1c	4/12/2023	7.00		2.18	3.91	348.00	> TV
2.33		BH3	4/12/2023	7.10		2.09	3.56	9.99	> TV
2.26		BH4	4/12/2023	7.30		2.49	5.47	2.42	> TV
2.18		BH9	4/12/2023	7.20		1.99	3.20	173.00	> TV
2.09		BH12r	4/12/2023	6.90		2.26	4.24	4.08	> TV
1.99	Groundwater	BH13	4/12/2023	6.80		2.33	4.55	8.09	> TV
1.88	Cioundwater	BH14	4/12/2023	6.80		2.33	4.55	1.84	۶TV
1.75		BH15	4/12/2023	7.00		2.18	3.91	6.35	> TV
1.61		BH18	4/12/2023	6.60	0.20	2.43	5.07	1.58	> TV
1.47		BH19r	4/12/2023	7.50		1.61	2.15	2.42	> TV
1.18		BH21	4/12/2023	6.90		2.26	4.24	0.07	< TV
1.03		BH22	4/12/2023	6.80		2.33	4.55	4.68	> TV
0.9		SWP1	5/12/2023	7.70		1.18	1.32	0.09	< TV
0.78		SWC_up	5/12/2023	7.20		1.99	3.20	0.54	> TV
0.66	Rocklow Creek Surface Water	SWC_2	5/12/2023	7.30		1.88	2.84	0.76	> TV
0.56		SWC_down	5/12/2023	7.40		1.75	2.49	0.51	> TV
0.48		SWC_down_2	5/12/2023	7.40		1.75	2.49	0.25	> TV

TABLE 14-5: Ammonia Results December 2023 Quarter 1: Dunmore Recycling and Waste Depot

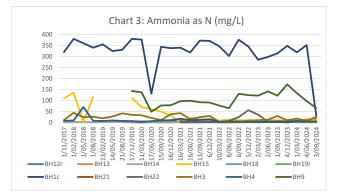
				pН		Assessme	ont Criteria	Result	
Ammonia Resu	lits comapred ANZAC	against the pH Modified T C (2000) Table 8.3.7		(lab)	Ecological Stressor Value	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
			Concentrations - PQL	0.1	-	•	•	0.01	
Lab Report No.		Sample ID.	Date	pH	mg/L	mg/L	mg/L	mg/L	
EW2400913001		BH1c	1/03/2024	7.20		1.99	3.20	319.00	> TV
EW2400913002		BH3	1/03/2024	7.30		1.88	2.84	17.40	> TV
EW2400913003		BH4	1/03/2024	7.40		1.75	2.49	4.20	> TV
EW2400913004		ВН9	1/03/2024	7.30		1.88	2.84	133.00	> TV
EW2400913005		BH12r	1/03/2024	6.90		2.26	4.24	4.28	> TV
EW2400913006	Groundwater	BH13	1/03/2024	6.70		2.38	4.83	7.13	> TV
EW2400913007	Circulturator	BH14	1/03/2024	6.70		2.38	4.83	1.44	> TV
EW2400913008		BH15	1/03/2024	7.10		2.09	3.56	9.00	> TV
EW2400913009		BH18	1/03/2024	7.60	0.20	1.61	2.15	2.36	> TV
EW2400913010		BH19r	1/03/2024	6.70		2.38	4.83	0.92	> TV
EW2400913011		BH21	1/03/2024	7.20		1.99	3.20	4.08	> TV
EW2400913012		BH22	1/03/2024	7.30		1.88	2.84	7.12	> TV
EW2400977001	Onsite Dam	SWP1	5/03/2024	7.40		1.75	2.49	0.07	< TV
EW2400977002		SWC_up	5/03/2024	7.20		1.99	3.20	0.23	> TV
EW2400977003	Rocklow Creek	SWC_2	5/03/2024	7.20		1.99	3.20	0.22	> TV
EW2400977004	Surface Water	SWC_down	5/03/2024	7.20		1.99	3.20	0.23	> TV
EW2400977005		SWC_down_2	5/03/2024	7.20		1.99	3.20	0.24	> TV

TABLE 14-6: Ammonia Results March 2024 Quarter 2: Dunmore Recycling and Waste Depot

				рН		Assessme	ent Criteria	Result	
Ammonia Resu		against the pH Modified T C (2000) Table 8.3.7	rigger Values -	pH (lab)	Ecological Stressor Value	pH Modified Trigger Values - 95% Freshwater	pH Modified Trigger Values - 95% Marine Water	Ammonai As N	Commant
			Concentrations - PQL	0.1	-	-	-	0.01	
Lab Report No.		Sample ID.	Date	pН	mg/L	mg/L	mg/L	mg/L	
EW2400913001		BH1c	4/06/2024	7.00		2.18	3.91	352.00	> TV
EW2400913002		BH3	4/06/2024	7.40		1.75	2.49	6.56	> TV
EW2400913003		BH4	4/06/2024	7.20		1.99	3.20	3.63	> TV
EW2400913004		BH9	4/06/2024	6.90		2.26	4.24	96.80	> TV
EW2400913005		BH12r	4/06/2024	6.60		2.43	5.07	2.50	> TV
EW2400913006	Groundwater	BH13	4/06/2024	6.80		2.33	4.55	14.00	> TV
EW2400913007	Groundwater	BH14	4/06/2024	6.80		2.33	4.55	1.50	> TV
EW2400913008		BH15	4/06/2024	6.90		2.26	4.24	7.15	> TV
EW2400913009		BH18	4/06/2024	7.40	0.20	1.75	2.49	1.24	> TV
EW2400913010		BH19r	4/06/2024	6.90		2.26	4.24	0.54	> TV
EW2400913011		BH21	4/06/2024	7.20		1.99	3.20	4.07	> TV
EW2400913012		BH22	4/06/2024	6.60		2.43	5.07	5.41	> TV
EW2400977001	Onsite Dam	SWP1	3/06/2024	7.50		1.61	2.15	2.10	> TV
EW2400977002		SWC_up	3/06/2024	7.40		1.75	2.49	0.12	< TV
EW2400977003	Rocklow Creek	SWC_2	3/06/2024	7.50		1.61	2.15	0.16	< TV
EW2400977004	Surface Water	SWC_down	3/06/2024	7.40		1.75	2.49	0.10	< TV
EW2400977005		SWC_down_2	3/06/2024	7.40		1.75	2.49	0.10	< TV

TABLE 14-7: Ammonia Results June 2024 Quarter 3: Dunmore Recycling and Waste Depot

				рН		Assessme	ent Criteria	Result	
Ammonia Resu		against the pH Modified T C (2000) Table 8.3.7		pH (lab)	Ecological Stressor Value	pH Modified Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
			Concentrations - PQL	0.1	-	-	-	0.01	
Lab Report No.		Sample ID.	Date	pН	mg/L	mg/L	mg/L	mg/L	
EW2400913001		BH1c	4/09/2024	7.00		2.18	3.91	28.30	> TV
EW2400913002		BH3	4/09/2024	7.40		1.75	2.49	25.40	> TV
EW2400913003		BH4	4/09/2024	7.30		1.88	2.84	2.84	> TV
EW2400913004		BH9	4/09/2024	7.00		2.18	3.91	65.20	> TV
EW2400913005		BH12r	4/09/2024	6.80		2.33	4.55	5.99	> TV
EW2400913006	Groundwater	BH13	4/09/2024	6.80		2.33	4.55	16.70	> TV
EW2400913007		BH14	4/09/2024	6.80		2.33	4.55	2.03	> TV
EW2400913008		BH15	4/09/2024	7.00		2.18	3.91	9.79	> TV
EW2400913009		BH18	4/09/2024	7.40	0.20	1.75	2.49	1.21	> TV
EW2400913010		BH19r	4/09/2024	6.80		2.33	4.55	0.74	> TV
EW2400913011		BH21	4/09/2024	7.20		1.99	3.20	4.43	> TV
EW2400913012		BH22	4/09/2024	7.00		2.18	3.91	3.81	> TV
EW2400977001	Onsite Dam	SWP1	4/09/2024	8.30		0.56	0.51	0.02	<tv< td=""></tv<>
EW2400977002		SWC_up	4/09/2024	7.30		1.88	2.84	0.12	< TV
EW2400977003	Rocklow Creek	SWC_2	4/09/2024	7.50		1.61	2.15	0.15	< TV
EW2400977004	Surface Water	SWC_down	4/09/2024	7.40		1.75	2.49	0.80	>TV
EW2400977005		SWC_down_2	4/09/2024	7.40		1.75	2.49	0.42	>TV


TABLE 14-8: Ammonia Results September 2024 Quarter 4: Dunmore Recycling and Waste Depot

CHARTS

202409 Q4_ENRS0033_SCC Dunmore Landfill_AEMR

Charts 3-18: Groundwater Charts

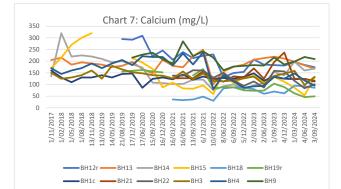
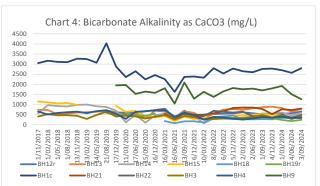
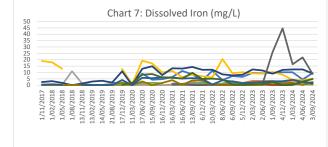
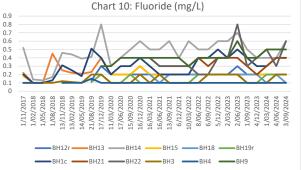
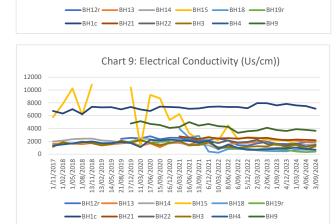



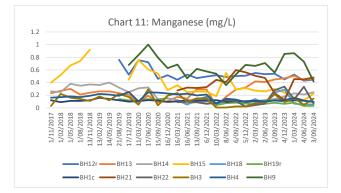
Chart 6: Depth to Water (mbgl TOC)

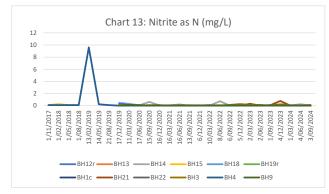

1/11/2017 1/05/2018 1/06/2018 1/06/2018 13/11/2018 13/11/2018 13/07/2019 13/07/2019 11/11/22/2019 11/16/2020 11/06/2020 15/09/2020 16/03/2020 16/12/2021 15/09/2021 16/06/2021 16/06/2021 16/06/2022 10/03/2023 1/09/2023 2/06/2023 1/09/2023 2/06/2023 1/09/2023 2/06/06/2023 2/06/

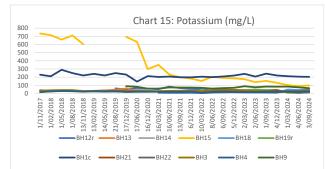
0

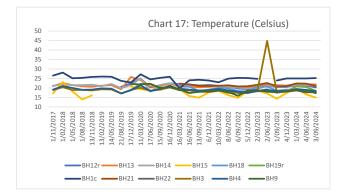


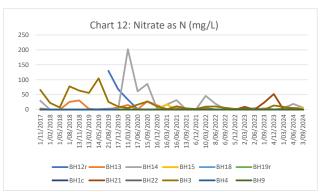


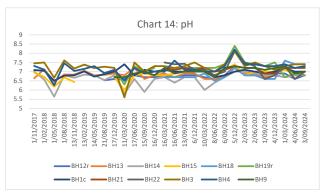


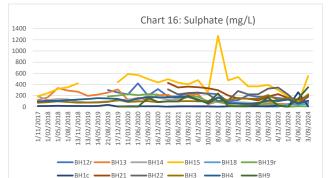


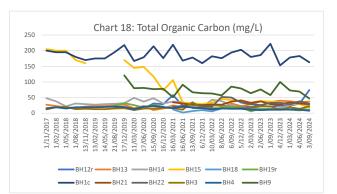


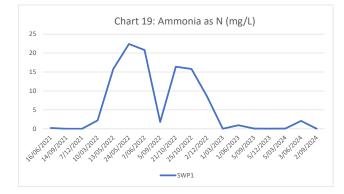


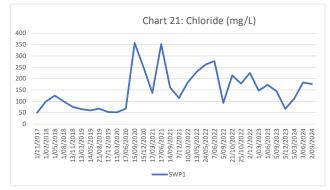


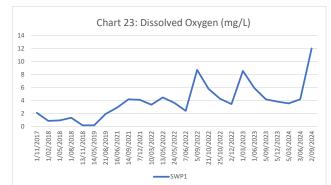




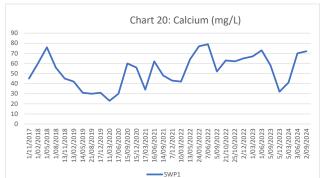


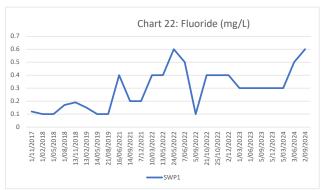


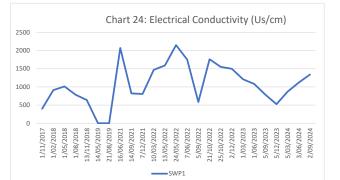


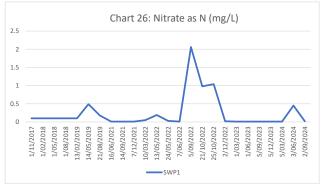


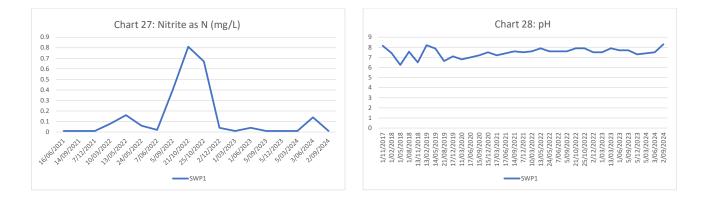


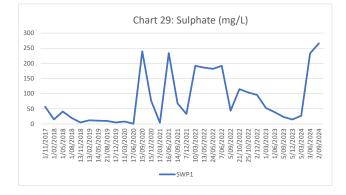

Charts 19-34: Onsite Surface Water Charts

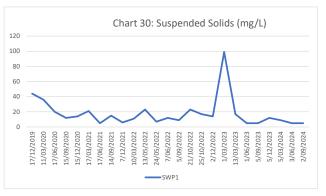


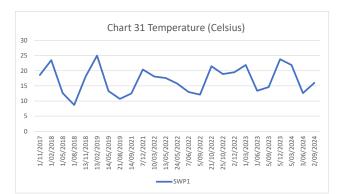


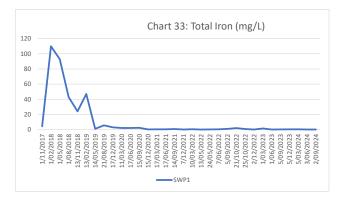


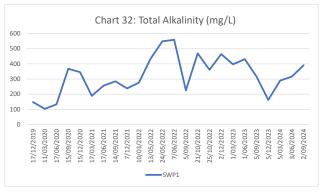


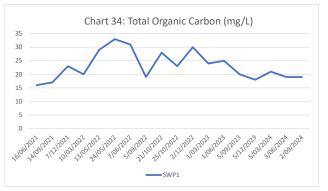


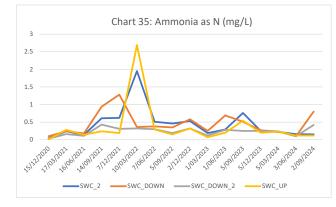


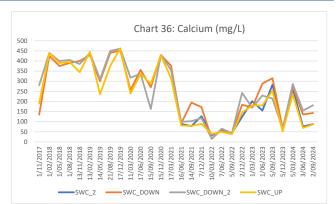


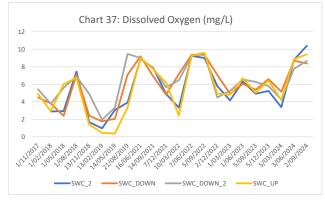


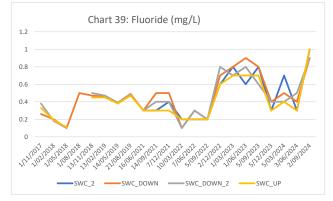


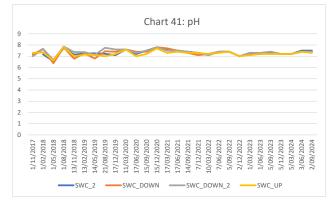


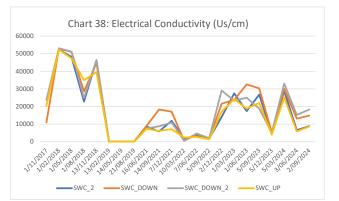


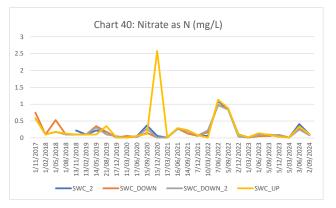


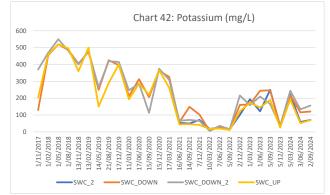


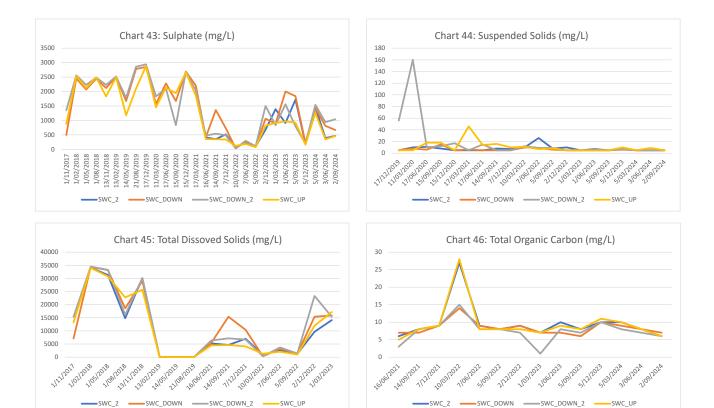


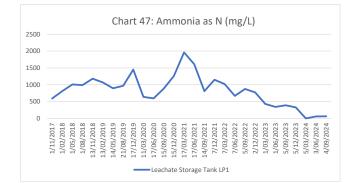

Charts 35-46: Rocklow Creek Surface Water Charts

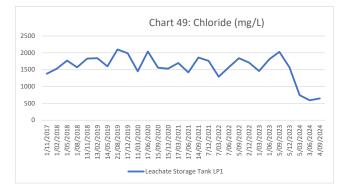


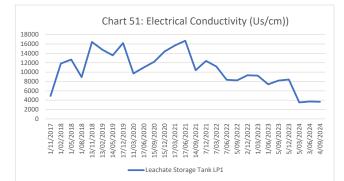


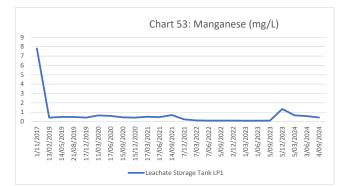


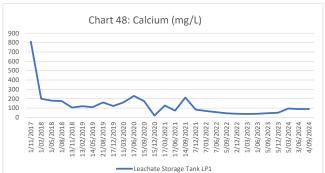


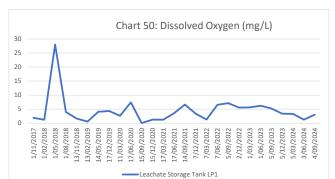


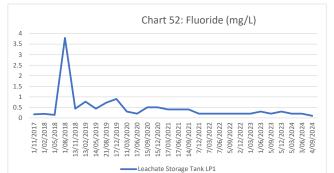


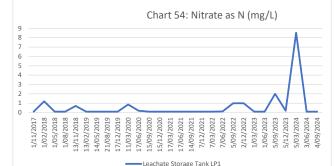


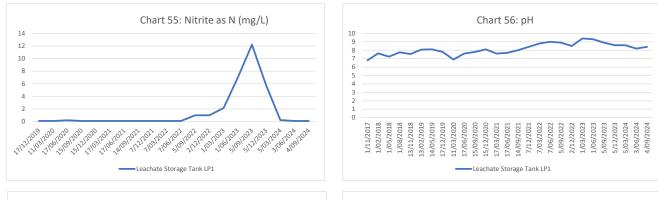


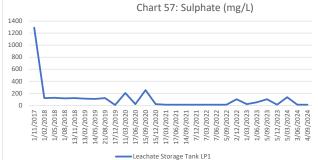

Charts 47-61 Leachate Water Quality Charts

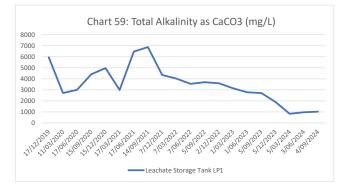


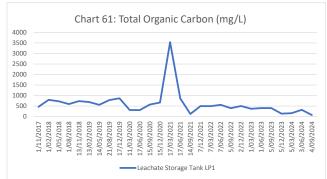


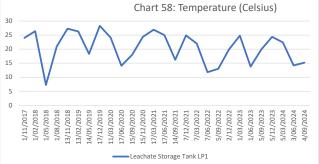


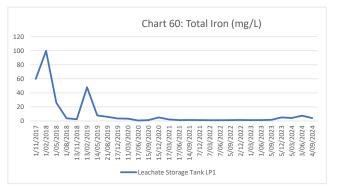












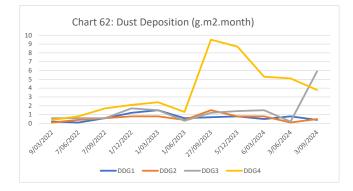


Chart 62 Dust Deposition Chart

APPENDICES

202409 Q4_ENRS0033_SCC Dunmore Landfill_AEMR

Appendix A: EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022. Updated 30/04/2024)

2	Leachatemonitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA

		Ref. no. DOC19/1027702).
18	Groundwater monitoring	BH9 - as shown on the drawing
		titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
20	Surface Water Monitoring	SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
23	Groundwater Monitoring	BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).

Appendix B: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

CHAIN OF CUSTODY ALS Laboratory: please tick >

Cl. Sydney: 277 Woodpark Rd, Sinitcheld NSW 2176 Ph: 02-3784-8565 E campleo.sydney@acenvire.com E Brisbane: 32 Shand St Stafford GLD 4003 Ph/07 3243 7222 Etsamoles brisbane dialser viro once Newcastle: 5 Rosenum Rd. Warabrook NSW 2504 D. Townsville: 14-15 Dearce Ct. Boble QLD 4915 EL New cashes of resegnanting, variaditors novy accorrect intervence intervence or policies or policies or policies or policies or policies of the second response of the second res

I Melbourne, 2-4 Westel R4: Springvele VIC 3171 Derth. 10 Hou Way, Malaga WA 8090 Ph/03 6649 6600 El samples melbourner@iskenvico.com Ph. 08 9209 7665 El samples perth@akenvico.com O Adelaide: 2-1 Burma Rd. Postaka SA 5095 Ph: C6 8359 0890 Eladalacie@alsenviro.com

C Launceston: 27 Wellington St. Launceston TAS 7260 Ph 03 6331 2156 E launcestoni@elsenviro.ecm

CLIENT:	Shellharbour City Council	TURNAROUND REQL	JIREMENTS :	Standard TAT (Li	st due date):							FOR LABORATORY	
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be long e.g., Ultra Trace Organics)		Non Standard or u	rgent TAT (List due	date):						Custody Seel Intact?	(Vac.) NO NIA
PROJECT:	Dunmore Quarterly Ground Waters EPL	ALS QUOTE NO .:	WO/030/19 T	ENDER			COC SE	QUENCE	NUMB	ER (Circ	ie)	Free ice / frozen ice brick	si present upon Vas No NVA
ORDER NUMBER	R:					coc:	1	23	4	5	67	Random Sample Tenjper	aura on Receipt /1 , C 'B
PROJECT MANA	AGER: Ryan Stirling				-	OF:	1	23	4	5	67	Other comment:	
SAMPLER:		SAMPLER MOBILE:		NOUISHED BY:			IVED B	Υ:			RE	LINQUISHED BY:	Environmental Distato
COC emailed to	ALS? (YES / NO)	EDD FORMAT (or default):		labert	Deho	A I	m	10	4				Environmental Division
Email Reports to	D :			TIME:		DATE		TY			DA	TE/TIME:	Wollongong Work Order Reference
Email Invoice to	:		4	12.20	14:30	2	4 \ ()	212	3				EW2305322
COMMENTS/SPE	ECIAL HANDLING/STORAGE OR DISPOSAL:	CC reports to:					(· _ · · · ·	
			······································										

SAMPLE ID	DATE / TIME		TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K		Dissolved Fe & Mn	NT-4 (NO2, NO3)	to ins		
	1 12:53				-	Z S E	100	Mn	NT-4 N03)	Send to Eurofins		Telephone - 02 42263125
		w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	12:0				1	✓	1	1	1			Field Tests - pH, EC, Temp & SWL
	13.10	w			1	1	1	1	4			Field Tests - pH, EC, Temp & SWL
	9:25	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
2R	11:32	w			1	1	4	1	1			Field Tests - pH, EC, Temp & SWL
3	11:55	w	·		1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
4	12:25	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
5	11.10	w			1	1	1	1	*	_		Field Tests - pH, EC, Temp & SWL
9R	13:30	w			1	1	1	4	*			Field Tests - pH, EC, Temp & SWL
8	8:45	w				1	1	1	1			Field Tests - pH, EC, Temp & SWL
1	10:40	w		-	1	-	1	1	1			Field Tests - pH, EC, Temp & SWL
2	15:20	w		i	1	1	4	1	1			Field Tests - pH, EC, Temp & SWL
licate	8:45	w			1	1	~	1	1			Field Tests - pH, EC, Temp & SWL
icate	8:43	w								1		
	· · · · ·											
				10								
	R Cate Cate	R 11:32 11:55 12:25 12:25 11:10 R 13:30 	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R 11.52 W / 11.55 W / 12.25 W / 13.35 W / 2.45 W / 10.40 V / 10.45 W / 10.45 V / 10.45 <td< td=""><td>R 11.32 W ✓ ✓ 11.55 W ✓ ✓ ✓ 12.25 W ✓ ✓ ✓ 11.10 W ✓ ✓ ✓ 12.45 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.45 W ✓ ✓ ✓ $2ate$ 8.45 W ✓ ✓ ate 8.43 ✓ ✓ ✓ 10 40 40 40 ✓</td><td>R 11:32 W \cdot \cdot \cdot \cdot 11:55 W \cdot \cdot \cdot \cdot \cdot 12:25 W \cdot \cdot \cdot \cdot \cdot 13:35 W \cdot \cdot \cdot \cdot \cdot 10:45 W \cdot \cdot \cdot \cdot \cdot \cdot 10:45 W \cdot \cdot \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot \cdot \cdot \cdot</td><td>R 11:32 \checkmark \checkmark</td><td>R 11:32 W \cdot \cdot</td><td>R 11:52 W \cdot \cdot</td><td>R 11.52 W \checkmark \checkmark</td></td<>	R 11.32 W ✓ ✓ 11.55 W ✓ ✓ ✓ 12.25 W ✓ ✓ ✓ 11.10 W ✓ ✓ ✓ 12.45 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.40 W ✓ ✓ ✓ 10.45 W ✓ ✓ ✓ $2ate$ 8.45 W ✓ ✓ ate 8.43 ✓ ✓ ✓ 10 40 40 40 ✓	R 11:32 W \cdot \cdot \cdot \cdot 11:55 W \cdot \cdot \cdot \cdot \cdot 12:25 W \cdot \cdot \cdot \cdot \cdot 13:35 W \cdot \cdot \cdot \cdot \cdot 10:45 W \cdot \cdot \cdot \cdot \cdot \cdot 10:45 W \cdot \cdot \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot \cdot \cdot \cdot	R 11:32 \checkmark	R 11:32 W \cdot	R 11:52 W \cdot	R 11.52 W \checkmark

V = VOA Vial HCI Preserved Plastic; XG = XND#7 USA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Bi

CERTIFICATE OF ANALYSIS

Work Order	EW2305322	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 04-Dec-2023 15:09
Order number	: 156810	Date Analysis Commenced	: 04-Dec-2023
C-O-C number	:	Issue Date	: 12-Dec-2023 13:38
Sampler	: Robert DaLio		IZ-DEC-2023 13:38
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		Accreditation No. 825
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- EK040: Poor spike recovery for Fluoride due to matrix interferences(confirmed by re-analysis).
- ED041G: LOR raised for Sulfate due to sample matrix
- EK057G: It has been noted that Nitrite is greater than Nox on sample 9, however this difference is within the limits of experimental variation.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Sample collection of Ground Waters by in-house EN67 by high flow and bailer method.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	04-Dec-2023 09:55	04-Dec-2023 12:55	04-Dec-2023 13:10	04-Dec-2023 09:25	04-Dec-2023 11:32
Compound	CAS Number	LOR	Unit	EW2305322-001	EW2305322-002	EW2305322-003	EW2305322-004	EW2305322-005
				Result	Result	Result	Result	Result
A005FD: Field pH								
рН		0.1	pH Unit	7.0	7.1	7.3	7.2	6.9
A010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	7840	1110	894	3620	1580
EA116: Temperature								
Temperature		0.5	°C	25.0	18.0	18.4	18.3	20.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2780	358	367	1800	523
Total Alkalinity as CaCO3		1	mg/L	2780	358	367	1800	523
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<20	120	103	<20	157
ED045G: Chloride by Discrete Analys	ser					·		
Chloride	16887-00-6	1	mg/L	994	118	64	387	200
ED093F: Dissolved Major Cations						·		
Calcium	7440-70-2	1	mg/L	125	146	125	186	181
Potassium	7440-09-7	1	mg/L	220	26	22	83	28
EG020F: Dissolved Metals by ICP-MS						·		
Manganese	7439-96-5	0.001	mg/L	0.106	0.090	0.123	0.853	0.450
Iron	7439-89-6	0.05	mg/L	12.0	1.39	3.15	0.12	10.2
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	<0.1	<0.1	0.4	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	348	9.99	2.42	173	4.08
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.01	0.24	0.01	<0.01	0.02

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Samplii	ng date / time	04-Dec-2023 09:55	04-Dec-2023 12:55	04-Dec-2023 13:10	04-Dec-2023 09:25	04-Dec-2023 11:32
Compound	CAS Number	LOR	Unit	EW2305322-001	EW2305322-002	EW2305322-003	EW2305322-004	EW2305322-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete An	alyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	14.0	0.36	<0.01	0.60
EK059G: Nitrite plus Nitrate as N (No	Dx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	14.2	0.37	<0.01	0.62
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	153	11	11	100	24
QWI-EN 67.11 Sampling of Groundwa	aters							
Standing Water Level		0.01	m AHD	3.19	3.12	4.25	3.19	4.30

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ing date / time	04-Dec-2023 11:55	04-Dec-2023 12:25	04-Dec-2023 11:10	04-Dec-2023 13:30	04-Dec-2023 08:45
Compound	CAS Number	LOR	Unit	EW2305322-006	EW2305322-007	EW2305322-008	EW2305322-009	EW2305322-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.8	6.8	7.0	7.5	6.6
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	2250	1080	2120	678	459
EA116: Temperature								·
Temperature		0.5	°C	21.3	21.0	17.4	18.2	19.1
ED037P: Alkalinity by PC Titrator								·
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	897	550	486	329	273
Total Alkalinity as CaCO3		1	mg/L	897	550	486	329	273
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							·
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	55	24	300	42	<1
ED045G: Chloride by Discrete Analys	er							·
Chloride	16887-00-6	1	mg/L	335	62	408	34	11
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	211	139	112	89	62
Potassium	7440-09-7	1	mg/L	28	16	130	42	8
EG020F: Dissolved Metals by ICP-MS								·
Manganese	7439-96-5	0.001	mg/L	0.467	0.178	0.239	0.063	0.289
Iron	7439-89-6	0.05	mg/L	2.19	0.65	8.19	0.74	2.46
EK040P: Fluoride by PC Titrator								·
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	8.09	1.84	6.35	2.42	1.58
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.01	<0.01	0.02	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplii	ng date / time	04-Dec-2023 11:55	04-Dec-2023 12:25	04-Dec-2023 11:10	04-Dec-2023 13:30	04-Dec-2023 08:45
Compound	CAS Number	LOR	Unit	EW2305322-006	EW2305322-007	EW2305322-008	EW2305322-009	EW2305322-010
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete An	alyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	0.86	0.08	<0.01	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NC)x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.87	0.08	0.02	<0.01	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	40	17	34	13	14
QWI-EN 67.11 Sampling of Groundwa	ters							
Standing Water Level		0.01	m AHD	4.22	4.62	21.2	4.54	2.19

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
(Sampli	ng date / time	04-Dec-2023 10:40	04-Dec-2023 10:20	04-Dec-2023 08:45	
Compound	CAS Number	LOR	Unit	EW2305322-011	EW2305322-012	EW2305322-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	6.9	6.8	6.6	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2170	1360	461	
EA116: Temperature							
Temperature		0.5	°C	21.0	18.3	19.1	
ED037P: Alkalinity by PC Titrator						·	
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	528	335	267	
Total Alkalinity as CaCO3		1	mg/L	528	335	267	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	227	345	<1	
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	238	77	11	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	237	156	65	
Potassium	7440-09-7	1	mg/L	41	13	8	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.123	0.336	0.300	
Iron	7439-89-6	0.05	mg/L	<0.05	44.6	2.59	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	
EK055G: Ammonia as N by Discrete A							
Ammonia as N	7664-41-7	0.01	mg/L	0.07	4.68	1.58	
EK057G: Nitrite as N by Discrete Ana							
Nitrite as N	14797-65-0	0.01	mg/L	0.78	<0.01	<0.01	

Sub-Matrix: WATER (Matrix: WATER)	Sample ID		BH21	BH21 BH22		 	
		Sampli	ng date / time	04-Dec-2023 10:40	04-Dec-2023 10:20	04-Dec-2023 08:45	
Compound	CAS Number	LOR	Unit	EW2305322-011	EW2305322-012	EW2305322-013	
				Result	Result	Result	
EK058G: Nitrate as N by Discrete Analy	/ser - Continued						
Nitrate as N	14797-55-8	0.01	mg/L	52.3	0.06	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	53.1	0.06	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	27	33	14	
QWI-EN 67.11 Sampling of Groundwate	rs						
Standing Water Level		0.01	m AHD	3.00	2.32	2.19	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY

ALS Laboratory: please tick ->

 Sydney: 277 Woodpark Rd, Smithilald NSW 2176
 Plr: 02 8784 8555 Eisamples.sydney@alsenviro.com Brisbane: 32 Shand St. Stafford QLD 4053 Ph/07 3243 7222 E.samples hrisbane@alserwire.com C Newcastle: 5 Rosegum Rd. Warabrook NSW 2304 Townsville: 14-15 Desma Ct. Bohle QLD 4818 Ph:02 4968 9433 Examples newcastla@alsenviro.com Ph:07 4796 0600 E: towosville environmental@elsenviro.com

C Melbourne 2-4 Wastall Rd, Springvale ViC 3171 Ph:03.8549.9600 E: samples melbourne@alsenviro.com C Adelaide: 2-1 Burma Rd Pooraka SA 5095 Ph: 03 8359 0890 E.adelaide@atsenviro.com

🗇 Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E samples.perth@alsenviro.com Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

					42	
CLIENT:	Shellharbour City Council	TURNAROUND REQUIREMENTS (Standard TAT may be longer for some te			FOR LABORATORY USE ON	LY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	e.g Ultra Trace Organics)	Non Standard or urgent TAT (List de	Castody See Infact?	NS N/A	
PROJECT:	Dunmore Quarterly Surface Waters EPL	ALS QUOTE NO.: WO/030/19 T		COC SEQUENCE NUMBER (Circle		
ORDER NUMBER:	:			coc: 1 2 3 4 5 6	7 Random Sample Temperature on R	
PROJECT MANAG	SER: Ryan Stirling			OF: 1 2 3 4 5 6	7 Other comment:	ື S ໒
SAMPLER:	Lobert Dalis s	SAMPLER MOBILE:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to AL	LS? (YES / NO) E	EDD FORMAT (or default):	- Robert Delio	Λ		
Email Reports to :	:		DATE/TIME:	DATE/TIME:	DATE/TIME:	DATE/TIME:
Email Invoice to :			4.12.20	5/12/27		
COMMENTS/SPEC		·				

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY	SAM MATRIX:	PLE DETAILS Solid(S) Water(W)		CONTAINER INFORMATION	I							sted to attract suite price) d filtered bottle required).	Additional Information
LAB ID			MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	ISS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC, Total Mn	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1	5.12.23 10:4	5 W			1	1	1	1	_			Field Tests - pH, EC, DO & Temp
	SWC_2	9:26	w				1		~	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_UP	8:45	w				-		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN	8:55	w				1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN_2	9.05					1		1	1	~	×	Field Tests - pH, EC, DO & Temp
	Duplicate	9:26	w	Environmental Divis			1		×	4		4	Field Tests - pH, EC, DO & Temp
				 Wollongong Work Order Reference EW23053 		 							
<u>_</u>	· · · · · · · · · · · · · · · · · · ·				• 6 ⁻ †	L			ι				
fater Container Codes: P = VOA Vial HCI Preserved	= Unpreserved Plastic; N = Nitric Prese VB = VOA Vial Sodium Bisutphate Pres	erved Plastic; ORC = Nitric Preserved erved: VS = VOA Vial Sulfuric Preserved	ORC; SH = So red: AV = Airfro	ndiun Telephone : 02 42253125		Plastic; /	AG = Amber G	lass Unprese	rved; AP - Airfr	eight Unpres	erved Plastic		

HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;

ENFM204

CERTIFICATE OF ANALYSIS

Work Order	EW2305324	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 05-Dec-2023 14:04
Order number	: 156810	Date Analysis Commenced	: 05-Dec-2023
C-O-C number	:	Issue Date	: 12-Dec-2023 13:38
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accreditation No. 825
No. of samples received	: 6		Accreditation No. 825
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	05-Dec-2023 10:45	05-Dec-2023 09:26	05-Dec-2023 08:45	05-Dec-2023 08:55	05-Dec-2023 09:05
Compound	CAS Number	LOR	Unit	EW2305324-001	EW2305324-002	EW2305324-003	EW2305324-004	EW2305324-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.3	7.2	7.2	7.2	7.2
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	526	4520	3980	5220	5110
EA015: Total Dissolved Solids dried at	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		2990	2630	3430	3360
EA025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	12	7	10	6	7
EA045: Turbidity								
Turbidity		0.1	NTU	4.8	10.3	10.0	10.3	10.5
EA116: Temperature								
Temperature		0.5	°C	23.8	21.3	21.5	22.0	21.8
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	162	120	120	121	120
Total Alkalinity as CaCO3		1	mg/L	162	120	120	121	120
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	15	186	162	213	195
ED045G: Chloride by Discrete Analyse	ər							
Chloride	16887-00-6	1	mg/L	67	1370	1230	1480	1470
ED093F: Dissolved Major Cations								·
Calcium	7440-70-2	1	mg/L	32	60	52	66	64
Magnesium	7439-95-4	1	mg/L	12	93	77	106	106
Sodium	7440-23-5	1	mg/L	59	749	617	864	858
Potassium	7440-09-7	1	mg/L	10	32	26	37	36
EG020F: Dissolved Metals by ICP-MS						1 	I	·
Iron	7439-89-6	0.05	mg/L	0.11	0.12	0.12	0.09	0.09

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID ng date / time	SWP1 Point 1 05-Dec-2023 10:45	SWC_2 Point 19 05-Dec-2023 09:26	SWC_UP Point 20 05-Dec-2023 08:45	SWC_Down Point 21 05-Dec-2023 08:55	SWC_DOWN_2 Point 22 05-Dec-2023 09:05
Compound	CAS Number	LOR	Unit	EW2305324-001	EW2305324-002	EW2305324-003	EW2305324-004	EW2305324-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-M	IS							
Manganese	7439-96-5	0.001	mg/L	0.359	0.079	0.074	0.076	0.075
Iron	7439-89-6	0.05	mg/L	0.37	1.23	1.09	1.48	1.17
EK040P: Fluoride by PC Titrato	or							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	0.3	0.4	0.4
EK055G: Ammonia as N by Dis	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.05	0.25	0.20	0.27	0.25
EK055G-NH4: Ammonium as N	by DA							
Ammonium as N	14798-03-9_N	0.01	mg/L	0.05	0.25	0.20	0.27	0.25
EK057G: Nitrite as N by Discre	ete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discr	ete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.01	0.08	0.03	0.09	0.07
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Anal	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	0.08	0.03	0.09	0.07
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	5.44	44.9	40.5	48.6	47.9
ø Total Cations		0.01	meq/L	5.41	44.0	36.4	50.5	50.2
ø lonic Balance		0.01	%	0.30	0.98	5.24	1.96	2.28
EP005: Total Organic Carbon (ТОС)					·	· 	·
Total Organic Carbon		1	mg/L	18	10	11	10	10
EP025FD: Field Dissolved Oxy	gen							·
Dissolved Oxygen		0.01	mg/L	3.81	5.24	6.44	6.60	5.81

Sub-Matrix: WATER			Sample ID	Duplicate	 		
(Matrix: WATER)				Baphoato			
		Sampli	ng date / time	05-Dec-2023 09:26	 		
Compound	CAS Number	LOR	Unit	EW2305324-006	 		
				Result	 		
EA005FD: Field pH		0.4					
рН		0.1	pH Unit	7.2	 		
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	4520	 		
EA015: Total Dissolved Solids dried at	180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	2960	 		
EA025: Total Suspended Solids dried a	t 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	7	 		
EA045: Turbidity							
Turbidity		0.1	NTU	10.2	 		
EA116: Temperature							
Temperature		0.5	°C	21.3	 		
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	122	 		
Total Alkalinity as CaCO3		1	mg/L	122	 		
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	189	 		
ED045G: Chloride by Discrete Analyser	· I II. II.						
Chloride	16887-00-6	1	mg/L	1290	 		
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	57	 		
Magnesium	7439-95-4	1	mg/L	88	 		
Sodium	7440-23-5	1	mg/L	711	 		
Potassium	7440-09-7	1	mg/L	30	 		
EG020F: Dissolved Metals by ICP-MS						·	
Iron	7439-89-6	0.05	mg/L	0.13	 		

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	05-Dec-2023 09:26	 	
Compound	CAS Number	LOR	Unit	EW2305324-006	 	
,				Result	 	
EG020T: Total Metals by ICP-MS	6					
Manganese	7439-96-5	0.001	mg/L	0.076	 	
Iron	7439-89-6	0.05	mg/L	1.20	 	
EK040P: Fluoride by PC Titrator	r di più di					
Fluoride	16984-48-8	0.1	mg/L	0.4	 	
EK055G: Ammonia as N by Disc	crete Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.23	 	
EK055G-NH4: Ammonium as N	by DA					
Ammonium as N	14798-03-9_N	0.01	mg/L	0.23	 	
EK057G: Nitrite as N by Discret	te Analyser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discre	te Analyser					
Nitrate as N	14797-55-8	0.01	mg/L	0.03	 	
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.03	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	42.8	 	
ø Total Cations		0.01	meq/L	41.8	 	
ø lonic Balance		0.01	%	1.16	 	
EP005: Total Organic Carbon (T	·OC)					·
Total Organic Carbon		1	mg/L	10	 	
EP025FD: Field Dissolved Oxyg	en					·
Dissolved Oxygen		0.01	mg/L	5.23	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

CHAIN OF CUSTODY C Sydney, 277 Woodpark Rd. Smithfield NSW 2176 Ph. 02 8784 8555 Elsamples.sydney@alsenviro.com D Newcastle: 5 Roseuum Rd Warabrook NSW 2304 ALS Laboratory: please tick ->

 Brisbane: 32 Shand St. Stafford QLD 4052
 Ph:07 8243 7222 Etsamples brisbana@bilsansirc.com C Townsville: 14-15 Depres Ct. Bonle QLD 4818 Ph.02 4968 9433 Elsamples newcastle@alsenvice.com Ph.07 4796 0600 El townsville.envicemental@alsenvice.com

Cl. Melbourne: 2-4 Westell Rd. Spring-ale VIC 3171 Ph:00 6549 9600 Et campies melbourne/galsenvici.com C Adelaide: 3-1 Burms Rd Poorske SA 5095 Ph: 08 5359 0990 Etadelade@a.senviro.com

El Parth: 10 Hed Wey Malaga WA 6090 Ph: 08 9209 7665 El saniples perthigaisen virolocm El Launceston: 27 Wellington St. Launceston TAS 7250 Ph 03 5301 2158 E laundeston @alaenviro.com

CLIENT:	Shellharbour City Council	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		FOR LABORATORY USE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be longer for some tes e.g., Ultra Trace Organics)	Non Standard or urgent TA⊤ (List du	ue date):	Gustody Seaf Intest?
PROJECT:	Dunmore Quarterly Leachate	ALS QUOTE NO.: WO	D/030/19 TENDER	COC SEQUENCE NUMBER (Circle)	Free ice / frozen ice bricke present upon receipt?
ORDER NUMBE	R:			COC: 1 2 3 4 5 6 7	Random Samplé Température on Recalpt 🖉 🖉 🕐
PROJECT MAN	AGER: Ryan Stirling			OF: 1 2 3 4 5 6 7	Other commanit
SAMPLER:	Kobert Dalis	SAMPLER MOBILE:	RELINQUISHED BY:	RECEIVED BY: REL	INQUISHED BY: RECEIVED BY:
	ALS? (YES / NO)	EDD FORMAT (or default):	Beert Palis	Anets	
Email Reports to	D ;		DATE/TIME:	DATERIME: 12/23 DAT	TE/TIME: DATE/TIME:
Email Invoice to	:		5.12.23	512123	

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY		DETAILS id(S) Water(W)		CONTAINER INFORMATION					-			id to attract suite priv tered bottle required).	e) Addition	Additional Information	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Aika, So4, CI, FI) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)			Comments on likely o or samples requiring a	ontaminant levels, dilutions, pecific QC analysis etc.	
	Leachate Storage Tank - LP1	5121012:10	Ŵ			1	1	1	1	1			Field Tests - J	oH, EC, Temp & DO	
		·					-								
	· · · · · · · · · · · · · · · · · · ·														
	· · · · · · · · · · · · · · · · · · ·														
											Er W	vironment ollongong Work Order EW23	al Division Reference 305326		
											 	Jephone : 02 422	51125		
				ТОТАL	10						ie			i	
V ≈ VOA Vial HCI Preserved	 Dupreserved Plastic; N = Nitric Preserved; VB = VOA Vial Sodium Bisulphate Preserved; Bottle; E = EDTA Preserved Bottles; ST = S 	ved; VS = VOA Vial Sulfuric Prese	erved: AV = Ai	Sodium Hydroxide/Cd Preserved; S = Sodium rfreight Unpreserved Vial SG = Sutfuric Preser	Hydroxide Pre	əsərvəd Plas ass; H≃H∢	ntic; AG = Ambe Cl preserved Pl	er Glass Unp lastic; HS = I	reserved; AP - HCI preserved	Airfreight Unpre Speciation bott	eserved Plasti le; SP = Sulfu	c ric Preserved Plastic	; F = Formaldehyde Preser	ved Glass;	

CERTIFICATE OF ANALYSIS

Work Order	EW2305326	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 05-Dec-2023 14:09
Order number	: 156810	Date Analysis Commenced	: 05-Dec-2023
C-O-C number	:	Issue Date	: 12-Dec-2023 13:39
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- EK059G, EK057G: NOx and Nitrite for sample no.1 confirmed by re-analysis.
- ED041G: LOR raised for Sulfate due to sample matrix
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	05-Dec-2023 12:10	 	
Compound	CAS Number	LOR	Unit	EW2305326-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.6	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	8410	 	
EA015: Total Dissolved Solids dried at 1	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5570	 	
EA116: Temperature						
Temperature		0.1	°C	24.4	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	134	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1770	 	
Total Alkalinity as CaCO3		1	mg/L	1900	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1570	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	51	 	
Potassium	7440-09-7	1	mg/L	355	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	1.35	 	
Iron	7439-89-6	0.05	mg/L	5.08	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	
EK055G: Ammonia as N by Discrete An	alyser					
Ammonia as N	7664-41-7	0.01	mg/L	330	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	05-Dec-2023 12:10	 	
Compound	CAS Number	LOR	Unit	EW2305326-001	 	
				Result	 	
EK057G: Nitrite as N by Discrete Analyse	ər					
Nitrite as N	14797-65-0	0.01	mg/L	5.76	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	<0.20	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.60	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	142	 	
EP025FD: Field Dissolved Oxygen						·
Dissolved Oxygen		0.01	mg/L	3.40	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	41.3	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 $^{\circ}\mathrm{C}$

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

A	CHAIN OF CUSTODY ALS Laboratory: please tick →	Ph. 02.3784 9555 E campia Newcastle: 5 Rosegum	sleydney@alser Rd Waraorook f	ivino den: Ph.07 3240 7222 Eis ISW 2304 El Townsville: 14-1	and St. Stafford QLD 4055 amples bisbane@aisenano 3 Cenma Ct. Bohle QLD 48	- con P Né D	∑ Melbourne, 2 Ph:03 3649 9606 1 ∑ Adelaider 3-1	El gampies m 1 Burma Rd, P	terbrunne@arse Pooraka SA 609	ervina pom Jé	© Perth 10 H Ph: 08 9209 76 ⊂ Launcestor	ió5 E, camplei 1: 27 Waltingto	, pertriĝalso In St. Launc	Rivera Brito
(ALS)	Shellharbour City Council	Ph 32 4985 \$433 E samoles			ewnsville enzroamental@alben		Pm 08 8355 0800) E.adelaids@	a senviro.com		Ph. 03 6331 2	158 E laurdas		Environmental Division Wollongong
	41 Burelli St WOLLONGONG NSW	2500	(Standard TAT	may be longer for some tests	 Standard TAT (List Non Standard or ur 	•		:				LABORA I U Iy Seal Intadi		Work Order Reference
	Dunmore Quarterly Ground Water		e.g., Ultra Tra ALS QUOT		/19 TENDER				JENCE NUMB	ER (Circle)		e / frozen ike 7		EW2400913
RDER NUMBER:							COC:	1 2	34	5 6	12.5 Bar (8)	m Sample Te	Real Research Prove Pro-	
ROJECT MANAGER:	Ryan Stirling			r			OF:	1 2	3 4	56	No. of Street,	somment		
AMPLER:	abert Dal	SAMPLER M			RELINCUISHED BY:)	RECE	EIVED BY:			RELINQUIS	HED BY:		
OC emailed to ALS? (mail Reports to :	YES / NO)	EDD FORMA	T (or detaux			•	DATE	ret	9		DATE/TIME	• .		
mail Involce to :	<u> </u>				1.3.20	1_			.24	۱.				■■■ ¹ ¹
	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:				<u></u>		<u> </u>		<u></u>				Telephone : 02 42253125
ALS USE ONLY		E DETAILS Nid(S) Water(W)		CONTAINER INFO	RMATION		SIS REQUIRE							Additional Information
<u>ALL PRESERVE AND AND AND AND AND AND AND AND AND AND</u>									~*					Comments on likely contaminant levels, dilutions
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)		Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	TOC	Dissolved Fe & Mn	NT-4 (NO2, NO3)	Send to Eurofins	a.		or samples requiring specific QC analysis etc.
	BH1C	1.3.2,4 10:-3	w			1	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	внз	12:5	5 W.			1	1	1	· •	1				Field Tests - pH, EC, Temp & SWL
	BH4	1 13:30				4	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	внэ	9:37	w		3	1	1	1	1					Field Tests - pH, EC, Temp & SWL
	BH12R	11:40	w			1	1	1		1				Field Tests - pH, EC, Temp & SWL
	BH13	12:00	w			1	1	1	1	1				Field Tests - pH, EC, Temp & SWI
	BH14	12:25	w			1	1	1	1	1				Field Tests - pH, EC, Temp & SWI
	BH15	11:16	w			1	1	1	1	1			_	Field Tests - pH, EC, Temp & SW
	BH19R	13:10	W.			1	1	*	*	1		·		Field Tests - pH, EC, Temp & SW
	BH18	8:55	, w			1	1	1	1	1				Field Tests - pH, EC, Temp & SW
	BH21	10:52	w			1	1	. 🖌	1	1				Field Tests - pH, EC, Temp & SWI
	BH22	10:2-	7_ w			1	1	1	1	1				Field Tests - pH, EC, Temp & SWI
	Duplicate	8:55	, w		· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1				Field Tests - pH, EC, Temp & SWI
	Triplicate	1 8:55	w								1			
									+					· · · · · · · · · · · · · · · · · · ·
					TIOTAL 10									

CERTIFICATE OF ANALYSIS

Work Order	EW2400913	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 01-Mar-2024 15:03
Order number	: 156810	Date Analysis Commenced	: 01-Mar-2024
C-O-C number	:	Issue Date	: 18-Mar-2024 10:52
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS CPI 2024		The Contraction of the sec
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via Bailer & High Flow Method.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ing date / time	01-Mar-2024 10:03	01-Mar-2024 12:50	01-Mar-2024 13:30	01-Mar-2024 09:37	01-Mar-2024 11:40
Compound	CAS Number	LOR	Unit	EW2400913-001	EW2400913-002	EW2400913-003	EW2400913-004	EW2400913-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.2	7.3	7.4	7.3	6.9
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	7610	1450	1030	3890	1620
EA116: Temperature								
Temperature		0.5	°C	25.0	18.7	18.9	18.7	21.4
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2700	459	388	1920	548
Total Alkalinity as CaCO3		1	mg/L	2700	459	388	1920	548
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	164	130	<1	138
ED045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	1	mg/L	971	153	77	436	180
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	123	159	148	198	196
Potassium	7440-09-7	1	mg/L	211	29	24	84	28
EG020F: Dissolved Metals by ICP-MS						·		
Manganese	7439-96-5	0.001	mg/L	0.118	0.151	0.156	0.863	0.527
Iron	7439-89-6	0.05	mg/L	12.4	2.01	4.25	0.18	10.2
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	<0.1	0.1	0.5	0.2
EK055G: Ammonia as N by Discrete /	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	319	17.4	4.20	133	4.28
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.08	<0.01	0.02	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Samplii	ng date / time	01-Mar-2024 10:03	01-Mar-2024 12:50	01-Mar-2024 13:30	01-Mar-2024 09:37	01-Mar-2024 11:40
Compound	CAS Number	LOR	Unit	EW2400913-001	EW2400913-002	EW2400913-003	EW2400913-004	EW2400913-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete	Analyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	9.65	<0.01	0.46	0.11
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						·
Nitrite + Nitrate as N		0.01	mg/L	<0.01	9.73	<0.01	0.48	0.11
EP005: Total Organic Carbon (TO	C)							·
Total Organic Carbon		1	mg/L	178	19	12	73	24
QWI-EN 67.11 Sampling of Ground	lwaters							·
Standing Water Level		0.01	m AHD	3.10	3.20	4.50	3.16	4.40

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	01-Mar-2024 12:00	01-Mar-2024 12:25	01-Mar-2024 11:16	01-Mar-2024 13:10	01-Mar-2024 08:55
Compound	CAS Number	LOR	Unit	EW2400913-006	EW2400913-007	EW2400913-008	EW2400913-009	EW2400913-010
				Result	Result	Result	Result	Result
A005FD: Field pH								
рН		0.1	pH Unit	6.7	6.7	7.1	7.6	6.7
A010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	2110	1500	1620	714	426
A116: Temperature								
Temperature		0.5	°C	21.9	21.6	19.7	18.9	20.9
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	829	610	475	345	242
Total Alkalinity as CaCO3		1	mg/L	829	610	475	345	242
ED041G: Sulfate (Turbidimetric) as S0	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	48	47	181	46	<1
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	295	166	204	37	11
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	198	198	86	95	62
Potassium	7440-09-7	1	mg/L	25	21	103	48	9
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.507	0.229	0.164	0.065	0.081
Iron	7439-89-6	0.05	mg/L	3.71	0.41	4.34	0.49	1.24
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	7.13	1.44	9.00	2.36	0.92
K057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.03	0.02	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplii	ng date / time	01-Mar-2024 12:00	01-Mar-2024 12:25	01-Mar-2024 11:16	01-Mar-2024 13:10	01-Mar-2024 08:55
Compound	CAS Number	LOR	Unit	EW2400913-006	EW2400913-007	EW2400913-008	EW2400913-009	EW2400913-010
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete Ar	alyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	2.03	5.28	0.05	0.02	<0.01
EK059G: Nitrite plus Nitrate as N (No	Dx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	2.03	5.31	0.07	0.02	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	38	25	33	11	11
QWI-EN 67.11 Sampling of Groundwa	aters							
Standing Water Level		0.01	m AHD	4.35	4.82	0.73	4.18	2.22

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
(Sampli	ng date / time	01-Mar-2024 10:52	01-Mar-2024 10:27	01-Mar-2024 08:55	
Compound	CAS Number	LOR	Unit	EW2400913-011	EW2400913-012	EW2400913-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.2	7.3	6.7	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2280	1680	427	
EA116: Temperature							
Temperature		0.5	°C	22.4	19.5	20.9	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	769	486	241	
Total Alkalinity as CaCO3		1	mg/L	769	486	241	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	155	218	<1	
ED045G: Chloride by Discrete Analyse	ər						
Chloride	16887-00-6	1	mg/L	302	200	10	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	125	116	62	
Potassium	7440-09-7	1	mg/L	16	22	9	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.455	0.132	0.080	
Iron	7439-89-6	0.05	mg/L	1.02	16.5	1.23	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.5	0.2	
EK055G: Ammonia as N by Discrete A	nalyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.08	7.12	0.89	
EK057G: Nitrite as N by Discrete Anal							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	01-Mar-2024 10:52	01-Mar-2024 10:27	01-Mar-2024 08:55	
Compound	CAS Number	LOR	Unit	EW2400913-011	EW2400913-012	EW2400913-013	
				Result	Result	Result	
EK058G: Nitrate as N by Discrete Anal	yser - Continued						
Nitrate as N	14797-55-8	0.01	mg/L	0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	35	28	12	
QWI-EN 67.11 Sampling of Groundwate	ers						
Standing Water Level		0.01	m AHD	3.04	2.41	2.22	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

CERTIFICATE OF ANALYSIS

Work Order	EW2400974	Page	: 1 of 4
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate	Date Samples Received	: 05-Mar-2024 15:09
Order number	: 156810	Date Analysis Commenced	: 05-Mar-2024
C-O-C number	:	Issue Date	: 12-Mar-2024 14:07
Sampler	: Robert DaLio		IZ-MAR-2024 14:07
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE CPI 2024		The Column
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for NOx on sample no.1 due to sample matrix.
- EK057G: LOR raised for Nitrite due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampli	ng date / time	05-Mar-2024 14:00	 	
Compound	CAS Number	LOR	Unit	EW2400974-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.5	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	8250	 	
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	4060	 	
EA116: Temperature						
Temperature		0.1	°C	22.2	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3330	 	
Total Alkalinity as CaCO3		1	mg/L	3330	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyse	er					
Chloride	16887-00-6	1	mg/L	1010	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	135	 	
Potassium	7440-09-7	1	mg/L	353	 	
EG020T: Total Metals by ICP-MS					l 	
Manganese	7439-96-5	0.001	mg/L	0.708	 	
Iron	7439-89-6	0.05	mg/L	15.9	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.6	 	
EK055G: Ammonia as N by Discrete A	nalyser				I 	
Ammonia as N	7664-41-7	0.01	mg/L	490	 	
EK057G: Nitrite as N by Discrete Ana	lvser					

					i	
Sub-Matrix: WATER			Sample ID	Leachate Sump	 	
(Matrix: WATER)						
		Sampli	ng date / time	05-Mar-2024 14:00	 	
Compound	CAS Number	LOR	Unit	EW2400974-001	 	
				Result	 	
EK057G: Nitrite as N by Discrete Analy	yser - Continued					
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Anal	lyser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NOx	() by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	257	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	7.51	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	86.5	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations
(WATER) EP005: Total Organic Carbon (TOC)
(WATER) EK055G: Ammonia as N by Discrete Analyser
(WATER) EG020T: Total Metals by ICP-MS
(WATER) EK057G: Nitrite as N by Discrete Analyser
(WATER) EK058G: Nitrate as N by Discrete Analyser
(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser
(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C
(WATER) ED045G: Chloride by Discrete Analyser
(WATER) ED037P: Alkalinity by PC Titrator
(WATER) EK040P: Fluoride by PC Titrator
(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CERTIFICATE OF ANALYSIS

Work Order	EW2400977	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 05-Mar-2024 15:12
Order number	: 156810	Date Analysis Commenced	: 05-Mar-2024
C-O-C number	:	Issue Date	: 12-Mar-2024 15:36
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER CPI 2024		The Calut
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
			ng date / time	05-Mar-2024 12:45	05-Mar-2024 10:00	05-Mar-2024 10:20	05-Mar-2024 10:40	05-Mar-2024 10:50
Compound	CAS Number	LOR	Unit	EW2400977-001	EW2400977-002	EW2400977-003	EW2400977-004	EW2400977-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.4	7.2	7.2	7.2	7.2
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	871	28800	25200	30000	33000
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		27400	23300	28400	30700
EA025: Total Suspended Solids dried	at 104 ± 2°C					·	·	·
Suspended Solids (SS)		5	mg/L	9	<5	<5	<5	<5
EA045: Turbidity								
Turbidity		0.1	NTU	4.6	2.5	2.5	2.5	2.1
EA116: Temperature								
Temperature		0.5	°C	21.9	19.7	19.4	20.9	20.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	289	168	168	168	161
Total Alkalinity as CaCO3		1	mg/L	289	168	168	168	161
ED041G: Sulfate (Turbidimetric) as SC	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	27	1450	1260	1420	1540
ED045G: Chloride by Discrete Analyse	ər							
Chloride	16887-00-6	1	mg/L	112	10000	8720	10300	11200
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	41	264	235	273	286
Magnesium	7439-95-4	1	mg/L	22	715	621	694	781
Sodium	7440-23-5	1	mg/L	122	5770	5000	5670	6340
Potassium	7440-09-7	1	mg/L	10	223	194	217	244
EG020F: Dissolved Metals by ICP-MS						·	· 	·
Iron	7439-89-6	0.05	mg/L	<0.05	0.07	0.10	<0.05	<0.10

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID ng date / time	SWP1 Point 1 05-Mar-2024 12:45	SWC_2 Point 19 05-Mar-2024 10:00	SWC_UP Point 20 05-Mar-2024 10:20	SWC_Down Point 21 05-Mar-2024 10:40	SWC_DOWN_2 Point 22 05-Mar-2024 10:50
Compound	CAS Number	LOR	Unit	EW2400977-001	EW2400977-002	EW2400977-003	EW2400977-004	EW2400977-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-M	S							
Manganese	7439-96-5	0.001	mg/L	0.482	0.260	0.329	0.241	0.199
Iron	7439-89-6	0.05	mg/L	0.39	0.24	0.29	0.26	0.17
EK040P: Fluoride by PC Titrato	r							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.7	0.4	0.5	0.4
EK055G: Ammonia as N by Dis	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.22	0.23	0.23	0.24
EK055G-NH4: Ammonium as N	by DA							
Ammonium as N	14798-03-9_N	0.01	mg/L	0.07	0.22	0.23	0.23	0.24
EK057G: Nitrite as N by Discre	ete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.02	0.02	0.01	0.01
EK058G: Nitrate as N by Discre	ete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.01	0.01	<0.01
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.02	0.03	0.02	0.01
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	9.50	316	276	323	351
ø Total Cations		0.01	meq/L	9.42	329	285	323	360
ø lonic Balance		0.01	%	0.40	2.03	1.73	0.08	1.31
EP005: Total Organic Carbon (ГОС)							
Total Organic Carbon		1	mg/L	21	10	10	9	8
EP025FD: Field Dissolved Oxy	gen							·
Dissolved Oxygen		0.01	mg/L	3.53	3.39	4.20	5.16	4.25

Sub-Matrix: WATER			Sample ID	Duplicate	 	
(Matrix: WATER)						
			ng date / time	05-Mar-2024 10:00	 	
Compound	CAS Number	LOR	Unit	EW2400977-006	 	
				Result	 	
EA005FD: Field pH pH		0.1	pH Unit	7.2	 	
		0.1	prionic			
EA010FD: Field Conductivity		1	uS/om	28800		
Electrical Conductivity (Non Compensated)		I	µS/cm	20000	 	
EA015: Total Dissolved Solids dried at 1	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	27300	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	2.4	 	
EA116: Temperature						
Temperature		0.5	°C	19.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	165	 	
Total Alkalinity as CaCO3		1	mg/L	165	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1280	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	10400	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	270	 	
Magnesium	7439-95-4	1	mg/L	689	 	
Sodium	7440-23-5	1	mg/L	5660	 	
Potassium	7440-09-7	1	mg/L	215	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.06	 	

Sub-Matrix: WATER			Sample ID	Duplicate	 		
(Matrix: WATER)							
			ing date / time	05-Mar-2024 10:00	 		
Compound	CAS Number	LOR	Unit	EW2400977-006	 		
				Result	 		
EG020T: Total Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.234	 		
Iron	7439-89-6	0.05	mg/L	0.27	 		
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	 		
EK055G: Ammonia as N by Disc	rete Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.24	 		
EK055G-NH4: Ammonium as N t	by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.24	 		
EK057G: Nitrite as N by Discrete	e Analyser						
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 		
EK058G: Nitrate as N by Discret	e Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.01	 		
EK059G: Nitrite plus Nitrate as I	N (NOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.02	 		
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	323	 		
ø Total Cations		0.01	meq/L	322	 		
ø lonic Balance		0.01	%	0.22	 		
EP005: Total Organic Carbon (To	OC)					·	·
Total Organic Carbon		1	mg/L	9	 		
EP025FD: Field Dissolved Oxyge	en					·	·
Dissolved Oxygen		0.01	mg/L	3.39	 		

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

	Mandatory Fields			·····	CHA	IN OF	CUS	TODY	,								Page	eof	f			
LIENT COD	DE: SHECIT	*PROJECT Ryan Stirling MANAGER: Ryan Stirling						SAMPLER:					SAMPLED BY ALS									
*CLIEN	NT: Shellharbour City Council	*PM MOBILE:	*					SAM MO			0	2 422	5 312	5		·	CoC	C #: (if applicat	blej	6	ALS	5)
OFFIC Invoiced Offic		LS QUOTE # lient PL if blank)		WO/030/19 TEN	DER			PURCH				156	810								_	
PROJE O./PROJEC	CT CT: Dunmore Quarterly Ground Waters EPI							:	SITE:			Dun	nore									
INVOICE T	O: Financial@shellharbour.nsw.gov.au			5											CC Inve PN				BIOSEC	URITY		
*EM/ REPORTS T (default to PI bla	ю. ми				l ,	Whe Mark an	ere Metals	ALS Quote N are required, boxes below	o. and/or Ana specify Total	(unfiltered b	adas must be ottle require	listed to a d) or Disso	lved (field t	filtered bot	ice) ttle require	rd).		vironn ollong Work C				
Pie Standard Sto W.	GE REQUIREMENTS Standard Storage ease check box. → Extended Storage samples: Specify Disposal Date: aters - 3 weeks oils - 2 months Note: Extended storage incurs a fe requires a signed agreement.	ge (Not all tests contact Cliev	NAROUND e check box. → can be expedited, t Services for more primation)	 5+ days (no s 3 day (+15%) 2 day (+30%) 1 day (+50%) 														Work C EW)rder f 124	eferer .02		52
		ć - 1			MATRIX: MATRIX: Soil/Sold(S) Water(W) Sediments (SD), Product (P), Biora (B), Biosolid (BS)	Ammonia NT-04 (NO2 & NO3)		NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	Dissolved Fe & Mn Field Tests	pH, EC, Temp & SWL Send to Eurofins							Tete	ephone : (02 4225	3125		
S Use Inly Ib ID	Sample ID	Depth	Date	/Time 2	MATRIX: Soil/Solid((SD), Dust Biosolid (E	Ammo NT-04	Ă	NT-2A Filtere	Dissoly Field T	pH, EC Send t							(addition bottles re	nal	nment on h	itional Inform nazards - e.g. gh contamina	, asbes	
	BH1C		4.6.24	f 10:10 4	w	х	х	x	x x	(
	BH3		1	14:00 4	w	х	х	x	x x	(
	BH4			13:20 4	w	x	X	x	хх	(
	вня			C1:23 4	w	X	Х	x	x x	(¹									-			
	BH12R			12:05 4	w	x	х	x	x x	:				_								
	BH13		<u>-</u> -	12:25 4	w	х	х	x	x x	(
	BH14			12:55 4	w	X	х	x	x x	:												
	BH15			1:53 4	w	x	х	x	x x	:	-											_
	BH19R			3:40 4	w	х	х	x	x x	:						-						
	BH18			8:25 4	w	x	х	x	x x	:		-				+						
	BH21			11.10 4	w	х	х	x	x x	:									+		+	
	BH22			(J:28 4	w	X	х		x x	;											+	
	Duplicate			8:25 4	w	x	x		x x										+		+	
	Triplicate			کر در اور ۲ مرد ک	w					x												
ceipt etail	Chilling Ice: Ice Bridges:	Sample Temp	7.9≈ 6.	<u>8 - 7.1</u>	Security Seal	Yes		NA(Non	Carr) Deta	ier		Courier/	Post			Client (Packaging: Circle}		rd Esky) Foam Esky	у Ва	lox/8

ENFM (204/17)

~

Approved Date: 13/02/2024

CERTIFICATE OF ANALYSIS

Work Order	EW2402552	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 04-Jun-2024 15:10
Order number	: 156810	Date Analysis Commenced	: 04-Jun-2024
C-O-C number	:	Issue Date	: 20-Jun-2024 17:03
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS CPI 2024		Accreditation No. 825
No. of samples received	: 14		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample nos. 10 and 13 due to sample matrix.
- EK059G: LOR raised for NOx on sample no.1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling High Flow and Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
,		Sampli	ng date / time	04-Jun-2024 10:10	04-Jun-2024 14:00	04-Jun-2024 13:20	04-Jun-2024 09:23	04-Jun-2024 12:05
Compound	CAS Number	LOR	Unit	EW2402552-001	EW2402552-002	EW2402552-003	EW2402552-004	EW2402552-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.4	7.2	6.9	6.6
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	7500	759	842	3790	1860
EA116: Temperature								
Temperature		0.5	°C	25.0	18.4	19.0	17.7	21.3
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2570	282	350	1510	574
Total Alkalinity as CaCO3		1	mg/L	2570	282	350	1510	574
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA					·		·
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	261	69	57	146	84
ED045G: Chloride by Discrete Analys	er					·		·
Chloride	16887-00-6	1	mg/L	989	115	120	528	230
ED093F: Dissolved Major Cations								·
Calcium	7440-70-2	1	mg/L	124	98	117	218	184
Potassium	7440-09-7	1	mg/L	206	30	23	75	32
EG020F: Dissolved Metals by ICP-MS						·		·
Manganese	7439-96-5	0.001	mg/L	0.112	0.049	0.116	0.730	0.428
Iron	7439-89-6	0.05	mg/L	12.4	0.20	2.65	2.95	4.57
EK040P: Fluoride by PC Titrator						·		·
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.1	0.5	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	352	6.56	3.63	96.8	2.50
EK057G: Nitrite as N by Discrete Ana	llyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.05	0.02	<0.01	0.01	0.05

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	04-Jun-2024 10:10	04-Jun-2024 14:00	04-Jun-2024 13:20	04-Jun-2024 09:23	04-Jun-2024 12:05
Compound	CAS Number	LOR	Unit	EW2402552-001	EW2402552-002	EW2402552-003	EW2402552-004	EW2402552-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete An	alyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	4.83	0.06	0.02	1.20
EK059G: Nitrite plus Nitrate as N (NO	Dx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.10	4.85	0.06	0.03	1.25
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	183	14	11	69	30
QWI-EN 67.11 Sampling of Groundwa	aters							·
Standing Water Level		0.01	m AHD	2.75	2.83	4.15	2.75	4.04

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
,		Sampli	ing date / time	04-Jun-2024 12:25	04-Jun-2024 12:55	04-Jun-2024 11:38	04-Jun-2024 13:40	04-Jun-2024 08:25
Compound	CAS Number	LOR	Unit	EW2402552-006	EW2402552-007	EW2402552-008	EW2402552-009	EW2402552-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
pH		0.1	pH Unit	6.8	6.8	6.9	7.4	6.9
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	1900	1450	1090	683	328
EA116: Temperature								
Temperature		0.5	°C	22.0	21.6	16.6	18.7	20.5
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	652	464	347	326	181
Total Alkalinity as CaCO3		1	mg/L	652	464	347	326	181
ED041G: Sulfate (Turbidimetric) as S0	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	85	50	60	38	<10
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	206	158	147	37	11
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	182	160	54	92	46
Potassium	7440-09-7	1	mg/L	25	22	89	42	7
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.440	0.211	0.121	0.054	0.030
Iron	7439-89-6	0.05	mg/L	2.08	0.92	3.81	0.53	0.54
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	0.2	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	14.0	1.50	7.15	1.24	0.54
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.01	0.24	<0.01	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplii	ng date / time	04-Jun-2024 12:25	04-Jun-2024 12:55	04-Jun-2024 11:38	04-Jun-2024 13:40	04-Jun-2024 08:25
Compound	CAS Number	LOR	Unit	EW2402552-006	EW2402552-007	EW2402552-008	EW2402552-009	EW2402552-010
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete	Analyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	5.68	19.3	<0.01	0.04	<0.01
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	5.69	19.5	<0.01	0.04	<0.01
EP005: Total Organic Carbon (TOC	;)							
Total Organic Carbon		1	mg/L	35	33	29	12	9
QWI-EN 67.11 Sampling of Ground	waters						·	
Standing Water Level		0.01	m AHD	3.90	4.22	0.75	4.33	1.99

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
(Sampli	ng date / time	04-Jun-2024 11:10	04-Jun-2024 10:38	04-Jun-2024 08:25	
Compound	CAS Number	LOR	Unit	EW2402552-011	EW2402552-012	EW2402552-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.2	6.6	6.9	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2230	1160	328	
EA116: Temperature							
Temperature		0.5	°C	22.3	18.9	20.5	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	729	356	180	
Total Alkalinity as CaCO3		1	mg/L	729	356	180	
ED041G: Sulfate (Turbidimetric) as SC	O4 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	126	52	<10	
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	299	162	14	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	124	84	46	
Potassium	7440-09-7	1	mg/L	14	7	7	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.450	0.334	0.029	
Iron	7439-89-6	0.05	mg/L	2.57	21.8	0.54	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.3	0.3	
EK055G: Ammonia as N by Discrete A							
Ammonia as N	7664-41-7	0.01	mg/L	4.07	5.41	0.54	
EK057G: Nitrite as N by Discrete Ana							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	04-Jun-2024 11:10	04-Jun-2024 10:38	04-Jun-2024 08:25	
Compound	CAS Number	LOR	Unit	EW2402552-011	EW2402552-012	EW2402552-013	
				Result	Result	Result	
EK058G: Nitrate as N by Discrete Analys	er - Continued						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	31	38	9	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	2.70	2.06	1.99	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

	Mandatory Fields			· · · · ·		CHAIN	I OF	CUST	ODI	1									Pag	e	of		
CLIENT CO		*PROJECT MANAGER:		Ryan St	irling				SAM	PLER:			SAN	IPLEC	BY A	LS							
*CLIEN	IT: Shellharbour City Council	*PM MOBILE:								IPLER BILE:			02	422	5 312	5			CoC	C #: (if app	olicable)	AL	s)
OFFI	CE: Shellbarbour	ALS QUOTE # (Client PL if blank)		WO/030/19	TENDE	र			PURCI					156	810								
(Invoiced Offi PROJE	^{ce)}				_					SITE:				Dunn	nore								
NO./PROJE	Financial@shellharbour.nsw.gov.au					a sa		eter a la Recipi		11	1			1.45g 			CC Invoi PM				BIOSEC	URITY	
(client default if *EM REPORTS (default to P bli	AIL Ryan stirlingshellharbour.ns 10: Mitchell.copasshe	w.gov.au, Glenn.h Ilharbour.nsw.gov	oldenshell au, lab@ei	harbour.nsw.go nrs.com.au	ov.au,		Whe Mark an)			a month.	Analysis S	uite Codes arad bottle	a required	listed to at	ved (field)	iltered bot	ce) tia required on that sa) mple.	Er	Australia) nmenta	I Divisio	i
P. Standard Sto M	GE REQUIREMENTS Standard Sto lease check box. →	orage (Not all tests contact Client infoi	AROUND check box. an be expedited Services for mo mation)		-15%) -30%)	harge)			9					Temp					VV	Work EV	igong Order R V24	eference 0254	6
Comments: ALS Use Only	Sample ID	Depth		hate/Time	No. Bottles	MATRIX: Soil/Solid(S) Water(W) Sediments (SD), Dust (D), Product (P), Biota (B), Biosolid (BS)	L	NT-1, NT-2A (lonic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3		Field Test pH, EC, DO &					Lab C (addition bottles Dup	2C onal	(Comment on	ikional Inform a hazards - e.g., a igh contaminatio	sbestos, known
Lab ID	SWP1	<u>a (1. 14 m.)</u>	3.6.2	4 10.10	4	_ <u></u>	X	x	x	x				Х									
			<u></u>	11-4 <u>-</u>				x		х	X	х	х	х									
├┼-	SWC_2		+		-			х		х	х	х	х	х					⊡·				
	SWC_UP		+	10:42				х		х	х	х	Х	х									
			+-1	<u>光</u> :ci		<u> </u>		x		х	х	х	х	X									
	SWC_DOWN_2		+	10:15				х		х	х	Х	х	X				.,					
	Duplicate	r				<u> </u>	†							-									
			-+												†								
							+																
							+																
Receipt Detail (Lab Use	Chilling Ice: Tee Bridge: Method: Frozen / Melted Frozen / Thawed		⊥ ∤ ·2°°	4.8° 4	, 8 °	Security Sea Intact (circle)	l Yes	/ No	/	None)	Carrier Details Con No	te #		Courie	r/Post	A		Client	Packagir (Circle) Count	I	Hard Esky	Foarn Esky #	Box/Bag/Othe
ONLY)	by: Sig	Receipt	1	Date/ Time:	3.	624	<u> </u>	Receive	d by:	A.	net	-ei			Signati	Jre ·	H	K	2		Date/ Time	316	pr.
Relinquished I Relinquished I	by: Datte 1 by: Sig	nature:	<u> </u>	Date/ Time:				Receive	d by:						Signati	цге					Date/ Time		

CERTIFICATE OF ANALYSIS

Work Order	EW2402546	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 03-Jun-2024 14:39
Order number	: 156810	Date Analysis Commenced	: 03-Jun-2024
C-O-C number	:	Issue Date	: 13-Jun-2024 17:43
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER CPI 2024		The Calut
No. of samples received	: 6		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	03-Jun-2024 10:10	03-Jun-2024 11:45	03-Jun-2024 11:30	03-Jun-2024 10:40	03-Jun-2024 10:55
Compound	CAS Number	LOR	Unit	EW2402546-001	EW2402546-002	EW2402546-003	EW2402546-004	EW2402546-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								1
рН		0.1	pH Unit	7.5	7.5	7.4	7.4	7.4
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	1120	6580	5890	13100	15200
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		4990	4300	10200	11900
EA025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	<5	9	<5	<5
EA045: Turbidity Turbidity	111 HA - 13 	0.1	NTU	3.4	10.6	11.3	8.3	7.6
EA116: Temperature								
Temperature		0.5	°C	12.6	13.3	13.5	13.6	13.7
ED037P: Alkalinity by PC Titrator								•
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	316	109	108	110	109
Total Alkalinity as CaCO3		1	mg/L	316	109	108	110	109
ED041G: Sulfate (Turbidimetric) as SC	94 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	233	391	346	810	940
ED045G: Chloride by Discrete Analyse	ər							
Chloride	16887-00-6	1	mg/L	183	2780	2430	5440	6170
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	70	76	69	136	155
Magnesium	7439-95-4	1	mg/L	44	180	161	371	442
Sodium	7440-23-5	1	mg/L	204	1500	1330	3140	3630
Potassium	7440-09-7	1	mg/L	11	59	52	116	134
EG020F: Dissolved Metals by ICP-MS						·	·	·
Iron	7439-89-6	0.05	mg/L	<0.05	0.06	0.07	<0.05	<0.05

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID ng date / time	SWP1 Point 1 03-Jun-2024 10:10	SWC_2 Point 19 03-Jun-2024 11:45	SWC_UP Point 20 03-Jun-2024 11:30	SWC_Down Point 21 03-Jun-2024 10:40	SWC_DOWN_2 Point 22 03-Jun-2024 10:55
Compound	CAS Number	LOR	Unit	EW2402546-001	EW2402546-002	EW2402546-003	EW2402546-004	EW2402546-005
			1	Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-M	S							
Manganese	7439-96-5	0.001	mg/L	0.038	0.072	0.072	0.059	0.057
Iron	7439-89-6	0.05	mg/L	0.11	0.86	0.88	0.61	0.54
EK040P: Fluoride by PC Titrato	r							
Fluoride	16984-48-8	0.1	mg/L	0.5	0.3	0.3	0.4	0.5
EK055G: Ammonia as N by Dis	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	2.10	0.16	0.12	0.10	0.10
EK055G-NH4: Ammonium as N	by DA							
Ammonium as N	14798-03-9_N	0.01	mg/L	2.08	0.16	0.12	0.10	0.10
EK057G: Nitrite as N by Discre	ete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.14	0.01	0.02	0.02	0.01
EK058G: Nitrate as N by Discr	ete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.45	0.41	0.34	0.27	0.25
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.59	0.42	0.36	0.29	0.26
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	16.3	88.7	77.9	172	196
ø Total Cations		0.01	meq/L	16.3	85.4	75.9	177	205
ø lonic Balance		0.01	%	0.18	1.94	1.32	1.24	2.40
EP005: Total Organic Carbon (ТОС)						·	·
Total Organic Carbon		1	mg/L	19	8	8	8	7
EP025FD: Field Dissolved Oxy	gen							
Dissolved Oxygen		0.01	mg/L	4.16	8.81	8.89	8.70	7.78

Sub-Matrix: WATER			Sample ID	Duplicate	 	
(Matrix: WATER)		Sampli	ng date / time	03-Jun-2024 10:15	 	
Compound	CAS Number	LOR	Unit	EW2402546-006	 	
Compound	CAS Number	2011		Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.5	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	1130	 	
EA015: Total Dissolved Solids dried at ²	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	990	 	
EA025: Total Suspended Solids dried at	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	3.3	 	
EA116: Temperature						
Temperature		0.5	°C	12.5	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	314	 	
Total Alkalinity as CaCO3		1	mg/L	314	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	231	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	176	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	70	 	
Magnesium	7439-95-4	1	mg/L	45	 	
Sodium	7440-23-5	1	mg/L	208	 	
Potassium	7440-09-7	1	mg/L	11	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.05	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 		
		Sampli	ing date / time	03-Jun-2024 10:15	 		
Compound	CAS Number	LOR	Unit	EW2402546-006	 		
				Result	 		
EG020T: Total Metals by ICP-MS	3						
Manganese	7439-96-5	0.001	mg/L	0.038	 		
Iron	7439-89-6	0.05	mg/L	0.12	 		
EK040P: Fluoride by PC Titrator	r						
Fluoride	16984-48-8	0.1	mg/L	0.5	 		
EK055G: Ammonia as N by Disc	crete Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	1.87	 		
EK055G-NH4: Ammonium as N	by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	1.86	 		
EK057G: Nitrite as N by Discret	te Analyser						
Nitrite as N	14797-65-0	0.01	mg/L	0.14	 		
EK058G: Nitrate as N by Discre	te Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.45	 		
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.59	 		
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	16.0	 		
ø Total Cations		0.01	meq/L	16.5	 		
ø lonic Balance		0.01	%	1.46	 		
EP005: Total Organic Carbon (T						·	·
Total Organic Carbon		1	mg/L	18	 		
EP025FD: Field Dissolved Oxyg	en					·	·
Dissolved Oxygen		0.01	mg/L	4.10	 		

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

	Mandatory Fields				CHAII	N OF	CUS	TOD	Y									Dag	e	of		
LIENT CO		DJECT AGER:	Ryan S	tirling			-	SAM	PLER:			SAM	PLED	BY AI	.s							
*CLIE	ENT: Shellharbour City Council Mo	*PM OBILE:	· · · · · · · · · · · · · · · · · · ·		•				APLER	02 4225 3125					CoC	C #:(ifapp	licable)	6	ALS			
OFF Invoiced O			WO/030/1	9 TEND	ER			PURC					15681	10								
PROJ		,	,					÷.,	SITE:				Dunm	оге								•
INVOICE	TO: Financial@shellharbour.nsw.gov.au			ć		an an Taong sa			- 			1. 1				C Invoic PM	e to			BIOSE	CURITY	
*EN REPORTS (default to	MAIL Ryan.stirlingshellharbour.nsw.gov.a 5TO: Mitchell conasshellharbou	u, Glenn.ho ır.nsw.gov.	idenshellharbour.nsw.g au, lab@enrs.com.au	ov.au,		Whe Mark an	re Metals :	re required	d, specify	Analysis S Totai (unfilt	uite Codes tered bottle	required)	ed to attra or Dissolve	d (field filt	uoted price) cred bottle a tested on	required).		(if not	y of Orig Australia)		tal Div	/ision
Standard S	AGE REQUIREMENTS Standard Storage Please check box. Standard Storage Storage time from receipt of samples: Specify Disposal Date: Waters: - 3 weeks Solis - 2 months Area and requires a signed agreement.	Ploase o (Not all tests ci contact Client :	aROUIND 5+ day heck box. → 3 day (in be expedited, invices for more helion) 2 day (1 day (+15%) +30%)	charge)													W		ngong Order V24	Refere 404	∩œ 038
nments:					MATRIX: SollSolic(s) Water(W) Sediments (SD), Dust (D), Product (P), Biota (B), Biocolici (BS)	Ammonia NT-04 (NO2 & NO3)		(Alka, So4, Cl, Fl) d Ca, K	Dissolved Fe & Mn	Field Tests pH, EC, Temp & SWL	Send to Eurofins							Tele	ephone	: 02 422	3125	
LS Use Only ab ID	Sample ID	Depth	Date/Time	No. Bottles	MATRIX: Soil/Solid(\$ (SD), Dust Biosolid (B	Ammo NT-04	T 0C	NT-2A (Alka, Fittered Ca, K	Dissoh	Field T pH, EC	Send t							bottles r			hazards - e.g high contamin	
	вн1с		2.9.20 9:5	4	w	х	х	×	х	х												
	BH3		11:55	4	w	х	х	х	x	х												
	BH4		12:45	4	w	x	х	x	х	х												
	вн9		1:10	4	w	х	X	х	х	х												
	BH12R		11:20	4	w	х	х	х	х	х												
	BH13		11:40	4	w	х	х	х	х	х												
	BH14		12:20	4	_w	x	Х	х	х	х										-		
	BH15		10:55	4	w	х	х	х	х	х												
	BH19R		13:10	4	w	x	х	х	х	х							·					
	DEL 19K		1.1.1						х	x												
	BH18		8:20	4	w	х	Х	Х														
			8:20	4	w w	X X	X X	×	x	х												
	BH18			+																		
	BH18 BH21		8:20	4	w	x	х	x	х	х												
	BH18 BH21 BH22		8:20 9:55 10:17	4	w	X X	X X	X X	X X	x x	×											
teceipt Detail Lab Use ONLY)	BH18 BH21 BH22 Duplicate	Sample Temp- at Receipt	8:20 9:55 10:17 8:20	4 4 4	w w w	X X X	X X X	X X	x x x	x x			Courier/P	Post				Packagin Cincle)		Hard Esky	Foam Es	ky Box/B

CERTIFICATE OF ANALYSIS

Work Order	EW2404038	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 03-Sep-2024 15:56
Order number	: 166321	Date Analysis Commenced	: 03-Sep-2024
C-O-C number	:	Issue Date	12-Sep-2024 18:13
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS CPI 2024		The Column
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EK059: LOR raised for NOx for sample 1 due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via High Flow and Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
,		Sampli	ing date / time	03-Sep-2024 09:35	03-Sep-2024 11:55	03-Sep-2024 12:45	03-Sep-2024 09:10	03-Sep-2024 11:20
Compound	CAS Number	LOR	Unit	EW2404038-001	EW2404038-002	EW2404038-003	EW2404038-004	EW2404038-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.4	7.3	7.0	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	7090	1220	690	3650	1920
EA116: Temperature								
Temperature		0.5	°C	25.2	17.7	18.3	17.8	20.3
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2800	434	339	1270	654
Total Alkalinity as CaCO3		1	mg/L	2800	434	339	1270	654
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	224	110	351	84
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	787	120	26	561	290
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	113	133	95	209	174
Potassium	7440-09-7	1	mg/L	203	40	26	64	30
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.093	0.144	0.093	0.418	0.447
Iron	7439-89-6	0.05	mg/L	9.22	2.55	1.81	4.87	9.49
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.1	0.5	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	28.3	25.4	2.84	65.2	5.99
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.13	0.01	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	03-Sep-2024 09:35	03-Sep-2024 11:55	03-Sep-2024 12:45	03-Sep-2024 09:10	03-Sep-2024 11:20
Compound	CAS Number	LOR	Unit	EW2404038-001	EW2404038-002	EW2404038-003	EW2404038-004	EW2404038-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete A	nalyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	1.21	0.05	<0.01	0.28
EK059G: Nitrite plus Nitrate as N (N	IOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.10	1.34	0.06	<0.01	0.28
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	163	22	8	47	74
QWI-EN 67.11 Sampling of Groundv	vaters						·	·
Standing Water Level		0.01	m AHD	3.20	3.18	4.40	3.22	4.35

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	03-Sep-2024 11:40	03-Sep-2024 12:20	03-Sep-2024 10:55	03-Sep-2024 13:10	03-Sep-2024 08:20
Compound	CAS Number	LOR	Unit	EW2404038-006	EW2404038-007	EW2404038-008	EW2404038-009	EW2404038-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.8	6.8	7.0	7.4	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	2050	1580	1610	667	402
A116: Temperature								
Temperature		0.5	°C	21.9	21.0	14.9	17.8	18.5
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	785	594	325	359	246
Total Alkalinity as CaCO3		1	mg/L	785	594	325	359	246
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	107	97	551	54	<10
ED045G: Chloride by Discrete Analys	er							·
Chloride	16887-00-6	1	mg/L	280	189	169	23	18
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	168	168	130	86	49
Potassium	7440-09-7	1	mg/L	26	20	98	50	12
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.460	0.246	0.225	0.053	0.032
Iron	7439-89-6	0.05	mg/L	2.03	1.38	5.32	0.71	0.48
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.6	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	16.7	2.03	9.79	1.21	0.74
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.03	0.04	0.02	0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplii	ng date / time	03-Sep-2024 11:40	03-Sep-2024 12:20	03-Sep-2024 10:55	03-Sep-2024 13:10	03-Sep-2024 08:20
Compound	CAS Number	LOR	Unit	EW2404038-006	EW2404038-007	EW2404038-008	EW2404038-009	EW2404038-010
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete	Analyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	5.93	6.74	6.72	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						·
Nitrite + Nitrate as N		0.01	mg/L	5.96	6.78	6.74	0.01	<0.01
EP005: Total Organic Carbon (TO	C)							
Total Organic Carbon		1	mg/L	37	23	19	12	12
QWI-EN 67.11 Sampling of Ground	lwaters						·	·
Standing Water Level		0.01	m AHD	4.29	4.72	0.69	4.57	2.28

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
(Sampli	ng date / time	03-Sep-2024 09:55	03-Sep-2024 10:17	03-Sep-2024 08:20	
Compound	CAS Number	LOR	Unit	EW2404038-011	EW2404038-012	EW2404038-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.2	7.0	6.8	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2170	1450	402	
EA116: Temperature							
Temperature		0.5	°C	21.0	17.2	18.5	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	799	492	244	
Total Alkalinity as CaCO3		1	mg/L	799	492	244	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	197	181	<10	
ED045G: Chloride by Discrete Analyse	ər						
Chloride	16887-00-6	1	mg/L	290	195	18	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	116	101	50	
Potassium	7440-09-7	1	mg/L	16	15	12	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.480	0.069	0.032	
Iron	7439-89-6	0.05	mg/L	1.25	8.85	0.50	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.6	0.2	
EK055G: Ammonia as N by Discrete A							
Ammonia as N	7664-41-7	0.01	mg/L	4.43	3.81	0.76	
EK057G: Nitrite as N by Discrete Ana							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	03-Sep-2024 09:55	03-Sep-2024 10:17	03-Sep-2024 08:20	
Compound	CAS Number	LOR	Unit	EW2404038-011	EW2404038-012	EW2404038-013	
				Result	Result	Result	
EK058G: Nitrate as N by Discrete Analys	er - Continued						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	29	30	12	
QWI-EN 67.11 Sampling of Groundwaters							·
Standing Water Level		0.01	m AHD	3.16	2.69	2.28	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

	Mandatory Fields					CHA	IN O	F CU	stoi	DY							•	,	<u> </u>			1	<u> </u>
CLIENT	CODE: SHECIT	*PROJECT MANAGER:		Ryan :	Stirling	J _			S/	MPLER	:		SA	MPL	D BY	ALS		· · · · · ·	- Pa	age _	of		\frown
*0	LIENT: Shellharbour City Council	*PM MOBILE:											0	2 42	25 312	25			- (CoC #: (i	if applicable)		
C (Invoiced	PFFICE: Shellharbour	ALS QUOTE # (Client PL if blank)		WO/030/1	9 TEND	ER				RCHASE ER NO.				15	6810				-				
PR NO./PR	OJECT DJECT: Dunmore Quarterly Surface Waters E	PL								SITE	:			Dur	more				-				
*INVOI (client defa									· .		<u>.</u>							voice to PM	,		BIOS		
REPOR	reMAIL Ryan.stirlingshellharbour.nsv TS TO: Mit banki	v.gov.au, Glenn.h Iharbour.nsw.gov	oldenshel .au, lab@e	lharbour.nsw.ç nrs.com.au	jov.au,		W Mark a	(N8 Vhere Metal an X in the	s are requ	ired, speci	/or Analysi. fy Total (un	filtered bo	es must bi tie recuire	e listed to ed1 or Dise	attract suite solved (field 1 above to	/quoted p	onice) ottle requi	radi	(if i	ntry of C not Austri	alia)	tal Divis	
Standard	RAGE REQUIREMENTS □ Standard Sto. Please check box. □ Extended Sto. I Storage time from receipt of samples: □ Extended Sto. Waters - 3 weeks Note: Extended storage incurs a requires a signed agreement	rage (Not all tests c contact Client infor	AROUND check box . → an be expedite Services for mo mation)	d, ☐ 3 day(+30%)	charge)								& Temp					-	Woll	ongong ork Order	Reference 4040	e .
ALS Use		1846 J				MATRIX: SolidSolid(\$) Water(W) Sediments (SD), Dust (D), Product (P), Bicta (B), Biosolid (BS)		NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	ŀy	NH3, NH4 & NO3	DS, TOC, Total Mn	Field Test pH, EC, DO & T							one : 02 422	3125	
Only Lab ID	Sample ID	Depth	D	ate/Time	No. Bottles	MATRIX: Soil/Solid (SD), Dust Biosolid ((TSS	NT-1, (lonic	TOC, I	Dissol	Turbidity	NH3, I	TSS, TDS,	Field T					(addi	DQC litional es req.) MS	(Comment o	dditional Info n hazards - e.g high contamin	, asbestos, know
1	SWP1		2.92	¢ 14:5	, 4		x	x	Х	X				х		<u></u>							
2	SWC_2			14:3	2			х		х	х	х	х	х									
3	SWC_UP			13:4 -	5			х		х	x	х	х	х									····.
	SWC_DOWN			B:55	5			Х		x	х	х	х	х									
>	SWC_DOWN_2			14:10				х		х	х	х	х	х							· · · · ·		
6	Duplicate	_		14:30.				х		x	X	х	х	х									
-																							
																					···		
Receipt Detail (Lab Use ONLY)	Chilling Method: Frozen / Melted Frozen Thawed	None Sample None at A Receipt	· 2 ° , (4.8 - 5	-1 °	Security Seal Intact (circle)	Yes	1 No 1	NA(N	Jonej	Carrier Details Con Not	e #		Courier	/Post	AL,	\mathcal{S}^{\Box}	Client	Packagir (Circle) Count	ng:	Hard Esky	Foam Esk	y * Sox/Bag/Othe
Relinguished	but Daho	VZ	L.	Date/ Time:	2.	9.00	-	Received	Бу:	A	ne	fr.			Signature	X	\subset	ع			Date/ Time:	319	Ry
Relinquished	by: Signatu	re:		Date/ Time:				Received	Ьу:						Signature	2		~			Date/ Time:		· · · ·

.

.

CERTIFICATE OF ANALYSIS

Work Order	EW2404020	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 03-Sep-2024 15:55
Order number	: 166321	Date Analysis Commenced	03-Sep-2024
C-O-C number	:	Issue Date	12-Sep-2024 18:13
Sampler	: Robert DaLio		IIIC-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER CPI 2024		The Column
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 various samples may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	02-Sep-2024 14:50	02-Sep-2024 14:30	02-Sep-2024 13:45	02-Sep-2024 13:55	02-Sep-2024 14:10
Compound	CAS Number	LOR	Unit	EW2404020-001	EW2404020-002	EW2404020-003	EW2404020-004	EW2404020-005
				Result	Result	Result	Result	Result
EA005FD: Field pH						1		
рН		0.1	pH Unit	8.3	7.5	7.3	7.4	7.4
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	1340	8880	8660	14800	18300
EA015: Total Dissolved Solids dried at	: 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		6740	6570	11400	14700
EA025: Total Suspended Solids dried	at 104 ± 2°C					·	·	·
Suspended Solids (SS)		5	mg/L	<5	<5	<5	<5	<5
EA045: Turbidity								,
Turbidity		0.1	NTU	4.0	4.8	5.3	4.0	3.6
EA116: Temperature								1
Temperature		0.5	°C	16.0	14.7	14.8	15.1	14.6
ED037P: Alkalinity by PC Titrator								1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	21	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	370	86	84	127	127
Total Alkalinity as CaCO3		1	mg/L	391	86	84	127	127
ED041G: Sulfate (Turbidimetric) as SO	14.2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	266	464	457	667	1040
ED045G: Chloride by Discrete Analyse	er							
Chloride	16887-00-6	1	mg/L	176	3260	3160	5360	6770
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	72	88	87	143	181
Magnesium	7439-95-4	1	mg/L	47	214	216	372	475
Sodium	7440-23-5	1	mg/L	211	1860	1810	3100	4050
Potassium	7440-09-7	1	mg/L	9	71	70	121	156
EG020F: Dissolved Metals by ICP-MS						l 	 	l
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID ng date / time	SWP1 Point 1 02-Sep-2024 14:50	SWC_2 Point 19 02-Sep-2024 14:30	SWC_UP Point 20 02-Sep-2024 13:45	SWC_Down Point 21 02-Sep-2024 13:55	SWC_DOWN_2 Point 22 02-Sep-2024 14:10
Compound	CAS Number	LOR	Unit	EW2404020-001	EW2404020-002	EW2404020-003	EW2404020-004	EW2404020-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-M	S							
Manganese	7439-96-5	0.001	mg/L	0.042	0.065	0.066	0.065	0.066
Iron	7439-89-6	0.05	mg/L	0.16	0.28	0.29	0.22	0.21
EK040P: Fluoride by PC Titrato	r							
Fluoride	16984-48-8	0.1	mg/L	0.6	1.0	1.0	0.9	0.9
EK055G: Ammonia as N by Dis	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.15	0.12	0.80	0.42
EK055G-NH4: Ammonium as N	by DA							÷.
Ammonium as N	14798-03-9_N	0.01	mg/L	0.02	0.15	0.12	0.79	0.42
EK057G: Nitrite as N by Discre	ete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.01	0.01	0.02	0.01
EK058G: Nitrate as N by Discr	ete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.11	0.11	0.08	0.08
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	0.12	0.12	0.10	0.09
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	18.3	103	100	168	215
ø Total Cations		0.01	meq/L	16.9	105	103	176	228
ø lonic Balance		0.01	%	4.11	0.66	1.14	2.35	2.96
EP005: Total Organic Carbon (ТОС)					·	·	·
Total Organic Carbon		1	mg/L	19	6	6	7	6
EP025FD: Field Dissolved Oxy	gen					·	·	·
Dissolved Oxygen		0.01	mg/L	12.0	10.4	9.42	8.37	8.66

Sub-Matrix: WATER			Sample ID	Duplicate	 	
(Matrix: WATER)						
			ng date / time	02-Sep-2024 14:30	 	
Compound	CAS Number	LOR	Unit	EW2404020-006	 	
				Result	 	
EA005FD: Field pH pH		0.1	pH Unit	7.5		
		0.1	phonit	7.5	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	8880	 	
EA015: Total Dissolved Solids dried at 7	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	6680	 	
EA025: Total Suspended Solids dried at	: 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	4.7	 	
EA116: Temperature						
Temperature		0.5	°C	14.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	86	 	
Total Alkalinity as CaCO3		1	mg/L	86	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	498	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	3350	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	88	 	
Magnesium	7439-95-4	1	mg/L	214	 	
Sodium	7440-23-5	1	mg/L	1820	 	
Potassium	7440-09-7	1	mg/L	71	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.05	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	02-Sep-2024 14:30	 	
Compound	CAS Number	LOR	Unit	EW2404020-006	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.064	 	
Iron	7439-89-6	0.05	mg/L	0.28	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	1.0	 	
EK055G: Ammonia as N by Disc	rete Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.16	 	
EK055G-NH4: Ammonium as N b	by DA					
Ammonium as N	14798-03-9_N	0.01	mg/L	0.16	 	
EK057G: Nitrite as N by Discrete	e Analyser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discret	e Analyser					
Nitrate as N	14797-55-8	0.01	mg/L	0.11	 	
EK059G: Nitrite plus Nitrate as N	N (NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.11	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	106	 	
ø Total Cations		0.01	meq/L	103	 	
ø Ionic Balance		0.01	%	1.72	 	
EP005: Total Organic Carbon (T) (OC					·
Total Organic Carbon		1	mg/L	5	 	
EP025FD: Field Dissolved Oxyge	ən					1
Dissolved Oxygen		0.01	mg/L	10.4	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

	<u> </u>	ndatory Fields CHAIN OF CUSTODY									_														
CLIENT	CODE:	SHECIT		*PROJECT MANAGER:		Ryan :	Stirlin	g			SA	MPLER:			SAI	MPLE	D BY	ALS			Page	of	•		
<u> </u>	LIENT:	Shellharbour City (Council	*PM MOBILE:								MPLER			0:	2 4 2 2	25 31:	25			CoC #:	(if applicable)		A	
(Invoiced		Shellharbour		S QUOTE # ant PL if blank)		WO/030/1	19 TENI	DER				CHASE ER NO.:				156	810								
PR NO./PR		more Quarterly Leac										SITE:		· • • • •		Duni	more	· ·							
*INVOI (client defi	oult if nil)	Financial@shellharbour.nsv								-	-		•			~ _			CC Invo			BIOS	ECURITY		
REPOR	EMAIL TS TO: to PM If	Ryan.stirlingshe Mitch	llharbour.nsw.g ell.copasshellha	ov.au, Glenn.l	holdenshellhark	our.nsw.	gov.au	•					*AN	ALYSIS	REQUI	RED			PM	C	ountry of (Origin:			
laciada	blank)				nuu, noechis.e	UIII.au			v Mark	(NB. Where Metals an X in the	are reaux	ed snecity	/ Icital funfi	filtered had	the requiree	Nam Diana	A	filtered prid filtered bott		. —	(if not Aust	ralia)			
	RAGE REOUI Please check b → I Storage time fr samples: Waters - 3 wea Soils - 2 mont	ox. om receipt of Spec Disposal Dat ba Note: Extend		• TUR Please (Not all tests contact Clien info	e check box. → can be expedited, it Services for more xrmation)	5+day 3 day(2 day(1 day((+15%) (+30%)	rcharge)						Temp							Envi Woll W	ronmen ongong ork Order W24	tal Divi: Reference 1040	sion ∞ 22	
ALS Use Only Lab ID		Sample ID		Depth	Dete/Tir	ne	No. Bottles	MATRIX: Soil/Solid(S) Water(W) Sediments (SD), Dust(D), Product (P), Biota (B), Biosolid (BS)	Ammonia	NT:2A (Alka, So4, Cl, Fl) Filtered Ca, K	Ž	NT-04 (NO2, NO3)		Field Test pH, EC, DO & 1						(a	.ab QC dditional		ditional Info		
		<u></u>	<u>eranilia eta aga</u>			<u> </u>					ğ					· ·				Du	p MS		n hazards - e.g high contamin 		(nown
		Leachate Storage Tai	nk - LP1		4/9/2	1	4	w	X	X	×	×	X	X											
					<u>ງ</u>	25																			
									+ -						_										
												_	-												
																	_								
					<u> </u>																				
		·····						· · · ·																	
		·····			<u> </u>								_ +					_							
													_												
Receipt Detail	Chilling	lce: lce	Bricks:	Sample									arrier							Packa					
(Lab Use ONLY)	Method:	Frozen / Melted Erozen	/ Thawed No.n	e Temp at ~4 Receipt	.3 ° 4.6	° . ų, (1 "	Security Seal Intact (circle)	Yes	/ No /	A(No	ne)	etails on Note	#	<u></u> с	ourier/Po	ost	A	□ сы С S	(Circie	2)	Hard Esky	Foam Esky		/Other
telinguished b Relinguished b	ert	Dalio	Signature:	24	27.	Date/ Time: <	4.	9.20	<u>r</u> 1	Received I	y:	<u> </u>	m		 }	Si	ignature		ħ	Count		Date/	1 9 10	#	
annquisned (Signature:			Date/ Time:	·	F		Received b	y:	/		_ 1	<u> </u>	Si	ignature	2				Time: Date/ Time:		- (

CERTIFICATE OF ANALYSIS

Work Order	EW2404022	Page	: 1 of 4
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 04-Sep-2024 14:43
Order number	: 166321	Date Analysis Commenced	04-Sep-2024
C-O-C number	:	Issue Date	13-Sep-2024 14:35
Sampler	: Robert DaLio		HIS-SEP-2024 14:35
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE CPI 2024		The Could's
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- ~ = Indicates an estimated value.
- EK057G: LOR raised for Nitrite due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK059G: LOR raised for NOx due to sample matrix.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ing date / time	04-Sep-2024 09:25	 	
Compound	CAS Number	LOR	Unit	EW2404022-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.4	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	3650	 	
EA015: Total Dissolved Solids dried at ⁴	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	3150	 	
EA116: Temperature						
Temperature		0.1	°C	15.2	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1020	 	
Total Alkalinity as CaCO3		1	mg/L	1020	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	648	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	91	 	
Potassium	7440-09-7	1	mg/L	783	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.434	 	
Iron	7439-89-6	0.05	mg/L	4.06	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.1	 	
EK055G: Ammonia as N by Discrete An	alyser					
Ammonia as N	7664-41-7	0.01	mg/L	64.4	 	

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID	Leachate Storage Tank LP1 04-Sep-2024 09:25	 	
Compound	CAS Number	LOR	Unit	EW2404022-001	 	
				Result	 	
EK057G: Nitrite as N by Discrete Analyse	ər					
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	79	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	3.05	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	30.2	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 $^{\circ}\mathrm{C}$

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Appendix C: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	CI Sydney: 277 Woodpark I Ph: 02 8784 8555 Elsample CI Newcastle: 5 Rosegum I Ph:02 4968 9433 Elsamples	les sydney@alse v Rd. Warabrook	enviro.com Ph:07-3243-7222 Els k NSW 2304 D Townsville: 14-1	hand St, Stafford QLD 405; samples brisbane@alsenvi -15 Desma Ct, Bohla QLD - townsville environmental@alse	ro.com Ph:00 1818 EL A	3 8549 9600 E. samples melbourne@elsanviro.com Ph: 08 4 Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ci Lau	th: 10 Hod Way, Malaga WA 6090 9209 7655 E: samples.perth@alser inceston: 27 Wellington St. Launces 8 6331 2158 E. launceston@alservir	ston TAS 7250
CLIENT:	Shellharbour City Council		TURNAR	OUND REQUIREMENTS :	Standard TAT (Li	st due date):		FOR LABORATORY USE C	NLY (Circle)
OFFICE:	Dunmore			T may be longer for some tosts	Non Standard or			Custody Seel Imact?	and the second second states and the second seco
PROJECT:	Dunmore Dust			TE NO.: WO/030/19 TENDE				Free ice / imzen ice bricke prese reseipt?	Yes 3ko ni upon Yes No
ORDER NUMBER:								Random Sample Temperature or	n Receipt: NA 'C
PROJECT MANAGER:	Ryan Stirling						OF: 1 2 3 4 5 6 7	Other comment.	1.24
SAMPLER: Pob	pert Dalio	SAMPLER M	IOBILE:		RELINQUISHED BY:			NQUISHED BY:	RECEIVED BY:
COC emailed to ALS? (EDD FORMA	AT (or defau	lt):	Robert 1	2410	M. Sanhos		
Email Reports to :				[E/TIME:	DATE/TIME:
Email Invoice to :		· .		1.	12.23		1-12-23 13:30		
COMMENTS/SPECIAL H	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:	-						
ALS USE ONLY		E DETAILS clid(S) Water(W)		CONTAINER INFO	RMATION		REQUIRED including SUITES (NB. Suite Codes must talls are required, specify Total (unfiltered bottle required) or Dissoive		Additional Information
LAB ID	• SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)		CM, TIS)			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	DDG1		AIR	· 		 A04 (Ash, CM, 			
	1.4	2.23 1122					i		L
	DDG2	. 1110	AIR			 ✓ 		nental Division	
	DDG3	9:55	AIR	<u> </u>			Wollonge Wollonge Work O	ong order Reference	
	DDG4	8.40		 		· ·	EW	/2305319	
	· · · · · · · · · · · · · · · · · · ·								
					· · · · · · · · · · · · · · · · · · ·		Telephone : 0	12 42253125	·
					TOTAL 10				

Work Order	EW2305319	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 01-Dec-2023 13:30
Order number	: 156810	Date Analysis Commenced	: 05-Dec-2023
C-O-C number	:	Issue Date	: 07-Dec-2023 21:24
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		Accreditation No. 825
No. of samples received	: 4		Accreditation No. 825
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Dust conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.
- The dust gauges for all samples were full when received by the laboratory. They may have overflowed in the field. Results for these gauges are thus reported on an 'as received' basis.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 02/11/2023 - 01/12/2023	DDG2 02/11/2023 - 01/12/2023	DDG3 02/11/2023 - 01/12/2023	DDG4 02/11/2023 - 01/12/2023	
			ing date / time	01-Dec-2023 11:22	01-Dec-2023 11:10	01-Dec-2023 09:55	01-Dec-2023 08:45	
Compound	CAS Number	LOR	Unit	EW2305319-001	EW2305319-002	EW2305319-003	EW2305319-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.4	0.4	1.0	5.9	
Ash Content (mg)		2	mg	7	7	17	101	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.4	0.4	0.4	2.8	
Combustible Matter (mg)		2	mg	6	6	7	47	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.8	0.8	1.4	8.7	
Total Insoluble Matter (mg)		2	mg	13	13	24	148	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

CHAIN OF CUSTODY

Ph. 02 8784 8555 Eisamples sydney@alsenviro.com ALS Laboratory: please tick >

CJ Sydney, 277 Woodpark Rd, Smithfield NSW 2176 C Brisbane: 32 Shand St, Statford OLD 4053 Ph/07 3243 7222 E samples brisbane@alserviro.com C Newcastle: 5 Rosegum Rd. Warabrook NSW 2304 C Townsville: 14-15 Desina Ct. Bohle QLD 4618 Ph:02 4968 9403 Ersamples newcastle@alserviro.com Ph:07 4796 0600 Er townsvilsienviro.com

II Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 5549 9600 E, samples melbourne@alsenviro.com C Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Phr 08 8359 0890 Eladelaide@alsenviro.com

CI Porth: 10 Hod Wey, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com □ Launceston: 27 Wellinuton St Launceston TAS 7250 Ph: 03 6331 2158 E. launceston@alsenviro.com

CLIENT:	Shellharbour City Council		1	DUND REQUIREMENTS : Standard TA	AT (List d	ue date):			FOR LABORATORY USE C	NLY (Circie)
OFFICE:	Dunmore	,	e.g Ultra Tra	T máy be longer for some tests D Non Standa	ard or urge	ent TAT (List di	ue date):		Custory Seaf Intact?	Yes No (NA
PROJECT:	Dunmore Dust		ALS QUO	TE NO.: WO/030/19 TENDER				CE NUMBER (Circle)	Free ice / frozen ice bricks prese receipt?	rtupon Yes No 🔨 📈
ORDER NUMBER:							COC: 1 2	3 4 5 6	7 Rendom Sample Temperature or	Recept: 10
PROJECT MANAGER:				······			OF: 1 2	3: 4 5 6	7 Other comments	
SAMPLER: Micho				CO3 590899 RELINQUISHED			RECEIVED BY:		RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM/	AT (or defau	tt): Michael DATE/TIME:	Sand	~°23	Anete DATE/TIME:			
Email Reports to : Email Invoice to :				04.93.24					DATE/TIME:	DATE/TIME:
				04.03.24		11:15	413124	11.20		
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:	: 						·	-
ALS USE ONLY		E DETAILS blid(S) Water(W)		CONTAINER INFORMATION					es must be listed to attract suite price)	Additional Information
	2									Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX		DTAL TTLES	CM, TIS)				
						A04 (Ash,				
ľ	DDG1	04.93.24 9:09	AIR			1				
2	DDG2	9:30	AIR			¥				
2	DDG3	8:57				×				
У	DDG4					1			Environmental Div	/ision
		₩ 8:45	5						- Wollongong	
									- Wollongong Work Order Refere - EW2400	
									EW2400	9/3
										······································
						-				
				TOTAL	10					
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preserve	ed Plastic; ORC = Nitric Preserved	d ORC; SH = S	Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxid		ed Plastic; AG =	Amber Glass Unpreserve	d; AP - Airfreight Unprese	rved Plastic	

V = VOA Vial HCI Preserved, VB = VOA Vial Sodium Bisulphate Preserved, VS = VOA Vial Sulfuric Preserved, AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

Work Order	EW2400973	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 04-Mar-2024 12:22
Order number	: 156810	Date Analysis Commenced	: 06-Mar-2024
C-O-C number	:	Issue Date	: 13-Mar-2024 15:52
Sampler	: Michael Santos		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		Accreditation No. 825
No. of samples received	: 4		Accreditation No. 825
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Newcastle.

- Dust analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in deposition units e.g., g/m².mth where the sampling procedure is not NATA accredited. ALS Mudgee laboratory is NATA accredited for dust sampling, therefore ALS Mudgee reported deposition units are accredited.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 01/02/2024 - 04/03/2024	DDG2 01/02/2024 - 04/03/2024	DDG3 01/02/2024 - 04/03/2024	DDG4 01/02/2024 - 04/03/2024	
		Sampli	ng date / time	04-Mar-2024 09:09	04-Mar-2024 09:30	04-Mar-2024 08:57	04-Mar-2024 08:45	
Compound	CAS Number	LOR	Unit	EW2400973-001	EW2400973-002	EW2400973-003	EW2400973-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.4	0.5	1.0	3.2	
Ash Content (mg)		2	mg	7	10	23	62	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	0.3	0.5	2.1	
Combustible Matter (mg)		2	mg	3	7	11	40	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.5	0.8	1.5	5.3	
Total Insoluble Matter (mg)		2	mg	10	17	34	102	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

	Mandatory Fields		CHAIN OF CUSTODY						Pa	ge	of											
CLIENT C	DDE: SHECIT	*PROJECT MANAGER:		Ryan S	tirling				SAM	MPLER:			SAN	/IPLEI	D BY A	ALS .			, 47	Je	_01	
+CLI	ENT: Shellharbour City Council	*PM MOBILE:						SAMPLER 02 4225 3125 MOBILE: 02 4225 3125					5			Ca	рС #: (if aj	pplicable)	ALS			
OF (Invoiced C	FICE: Shellharbour	ALS QUOTE # Client PL if blank)																				
PRO NO./PRO.										SITE:				Dunr	nore							
*INVOIC (client defau	TO: Financial@shellharbour.nsw.gov.au								an an Ar An Ar			•						oice to M			BIOSEC	URITY
*E REPORT	MAIL Ryan.stirlingshellharbour.nsv 5 TO: Mitchell.copasshell				jov.au,			(610	ALS Out	e Nio, ond/	*ANA or Analysis S	ALYSIS			tirart tuita	cuoted on	íre)			ry of Ori ot Australi		
(default ti	eMir Blankj	narbour.nsw.gov.	au, iabeeniis	S.COIII.au			W Mark a	here Metal	s are requir	red, specif	y Total (unfil ysis to Ind i	tered bott	e required	l) or Disso	lved (field	iltered bot	tle (equire	ed). sample.	F	nviro	nmenta	Division
Standard	AGE REQUIREMENTS Standard Stor Please check box. Dicrage time from receipt of samples: Specify Disposal Date: Waters - 3 weeks Solis - 2 months Note: Extended storage incurs a requires a signed agreement	rage (Not all tests c contact Client 1 inforr	AROUND theck box . → an be expedited, Services for more nation)	5+ day. 3 day (· 2 day (· 1 day (·	+15%) +30%)	charge)														(ollon Work EV	order R V24	oference 02542
Comments:						MATRIX: Soli/Solid(\$) Water(W) Sodiments (SD), Dust (D), Product (P), Biota (B), Biosolid (BS)	(Ash, CM TIS)								Tele		: 02 4226312					
ALS Use Only Lab ID	Sample ID	Depth	Date	/Time	No. Bottles	MATRIX: Soil/Solid((SD), Dust Biosolid (B	A04 (A												(addit bottles Dup	ional	(Comment on	litional Information hazards - e.g., asbestos, know gh contamination)
1	DDG1		3-6-20	921	1	D	⁻ X															
2	DDG2		1	9:15	1	D	x															
3	DDG3			9:39	1	D	x															
9	DDG4			13:15	1	D	X															
													1									
									ļ	 												
	,																					
			<u> </u>								Carrier								Packagir			
Receipt Detail (Lab Use ONLY)	Chilling Ice: Ice Bricks: Chilling Frozen / Melted Frozen / Thawed	None Sample Temp at Receipt	Aley	°C	°C	Security Seal Intact (circle)	Yes	/ No	$\underline{\mathbb{C}}$	None	Details Con Not	e#		Courier.		А-C.		Client	(Circle) Count		Hard Esky	Foam Esky Box/Bag/Ott
Relinquished	-1 Dehuo	1 4 .3	E.	Date/ Time:	3.	6.24	~	Receive		An	ete	<u> </u>	-		Signatu	/	\rtimes				Date/ Time:	3/6/24
Relinquished		ure:		Date/ Time:				Receive	ad by:						Signatu	re					Date/ Time:	

Work Order	EW2402542	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 03-Jun-2024 14:54
Order number	: 156810	Date Analysis Commenced	: 11-Jun-2024
C-O-C number	:	Issue Date	: 13-Jun-2024 16:38
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		Accreditation No. 825
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Newcastle.

- Dust analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in deposition units e.g., g/m².mth where the sampling procedure is not NATA accredited. ALS Mudgee laboratory is NATA accredited for dust sampling, therefore ALS Mudgee reported deposition units are accredited.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Deposition Gauges.
- The dust gauges for samples 001-003 were full when received by the laboratory. They may have overflowed in the field. Results for these gauges are thus reported on an 'as received' basis. No algaecide correction has been applied to EA139 Soluble Matter or EA142 Total Solids results (where applicable).
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 03/05/2024 - 03/06/2024	DDG2 03/05/2024 - 03/06/2024	DDG3 03/05/2024 - 03/06/2024	DDG4 03/05/2024 - 03/06/2024	
		Sampli	ng date / time	03-Jun-2024 09:21	03-Jun-2024 09:15	03-Jun-2024 09:39	03-Jun-2024 13:15	
Compound	CAS Number	LOR	Unit	EW2402542-001	EW2402542-002	EW2402542-003	EW2402542-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.7	0.1	0.1	3.3	
Ash Content (mg)		2	mg	13	2	3	62	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	<0.1	0.1	1.8	
Combustible Matter (mg)		2	mg	2	<2	2	34	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.8	0.1	0.2	5.1	
Total Insoluble Matter (mg)		2	mg	15	3	5	96	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

	Mandatory Fields				CHAI	N OF	CUS	STOE	Y							•		Paz		_of		
CLIENT CO	DDE: SHECIT	*PROJECT MANAGER:	Ryan	Stirling				SA	MPLER:			SAI	MPLE	DBY	ALS			raş	<u>ا م</u>			
*CLII	ENT: Shellharbour City Council	*PM MOBILE:							MPLER			0:	2 4 2 2	5 312	5			Co	oC #: (if ap	plicableJ	A	s)
OFF (Invoiced C		ALS QUOTE # (Client PL if blank)	WO/030/	19 TENDE	R				CHASE ER NO.:				156	810								a de la
PRO. NO./PROJ	JECT ECT: Dunmore Dust						·		SITE:				Dun	nore								
*INVOICE (client default			· · · ·													CC Inve Pl		Country of Origin: (if not Australia)			й	
*E REPORTS	MAIL Ryan.stirlingshellharbour.ns	w.gov.au, Glenn.h	oldenshellharbour.nsw. .au, lab@enrs.com.au	gov.au,			(5)(0)	ALE Our	, te No. and/			REQU			(:						
(default to	PM If WITCHER.COPASSITE blank)	imarbour.nsw.gov.	.au, iabeenis.com.au				here Metal	ls are requi	red, specify elow anal	Total (unfi	iltered bot	tle require	d) or Disso	lved (field	filtered bot	tle require					i	
Standard S	AGE REQUIREMENTS Standard Sto Please check box. → □ Extended St itorage time from receipt of samples: Specify Disposal Date: Waters - 3 weeks Soils - 2 months Note: Extended storage incurs requires a signed agreement	(Not all tests c contact Client infor	AROUND 5+ da check box. → 3 day an be expedited, Services for more 2 day mation) 1 day	(+15%) (+30%)	charge)								· .									
Comments:	·				MATRIX: Soli/Solid(\$) Water(W) Sediments (SD), Dust (D), Product (P), Biota (B), Biosolid (BS)	A04 (Ash, CM TIS)										hientiona (29.4924)						
ALS Use Only Lab ID	Sample ID	Depth	Date/Time	No. Bottles	MATRIX: Soil/Solid(5 (SD), Dust (Biasolid (B	A04 (A							· · · ·					Lab (additi bottles Dup	ional	(Comment on	itional Informa hazards - e.g., as gh contaminatio	bestos, known
	DDG1		03.09.24 13:31	1	D	X																
	DDG2		13:2	3 1	D	X																
	DDG3		11:50	2 1	D	x																
	DDG4		V yrac	2 1	D	X																
Receipt Detail (Lab Use ONLY)	Ice: Ice Bricks: Chilling Method: Frozen / Melted Frozen / Thawed.	None None Sample Temp at Receipt	· NA	°C	Security Sea Intact (circle)	1 Yes	/ No	/	None)	Carrier Details Con Not			Courier		Αı		Client	Packagir (<i>Circle)</i> Count	ng: †	Hard Esky #	Foam Esky # -	Box/Bag/Other #
Relinquished	Michael Santar sign	ature:	Date/ Time:	3.9.	24	15.10	Receive	ed by:		A	re	ta		Signatu	r• _	X-	Ī	·		Date/ Time:	3.9,	24.
Relinquished		ature:	Date/ Time:				Receive	ed by:						Signatu	re					Date/ Time:		

Work Order	EW2404041	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 03-Sep-2024 15:29
Order number	: 166321	Date Analysis Commenced	05-Sep-2024
C-O-C number	:	Issue Date	12-Sep-2024 15:30
Sampler	: Michael Santos		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		Accreditation No. 825
No. of samples received	: 4		Accreditation NO. 825
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Dust conducted by ALS Newcastle, NATA Accreditation No. 825, Site No. 1656.
- Dust analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in deposition units e.g., g/m².mth where the sampling procedure is not NATA accredited.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Deposition Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 02/08/2024 - 03/09/2024	DDG2 02/08/2024 - 03/09/2024	DDG3 02/08/2024 - 03/09/2024	DDG4 02/08/2024 - 03/09/2024	
		Sampli	ng date / time	03-Sep-2024 00:00	03-Sep-2024 00:00	03-Sep-2024 00:00	03-Sep-2024 00:00	
Compound	CAS Number	LOR	Unit	EW2404041-001	EW2404041-002	EW2404041-003	EW2404041-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.3	0.4	4.8	2.8	
Ash Content (mg)		2	mg	6	9	110	54	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	0.1	1.1	1.0	
Combustible Matter (mg)		2	mg	<2	<2	24	20	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.4	0.5	5.9	3.8	
Total Insoluble Matter (mg)		2	mg	7	10	134	74	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry / Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix D: Surface Gas (Methane) Field Sheets

ENT:	Shellharbour City Council	<u> </u>	TURNAR	OUND REQUIREMENTS :	Standard TAT	List due date):							FORL	BORATO	DRY USE C	ONLY (Circle)
FICE:	41 Burelli St WOLLONGONG NS	W 2500	(Standard T.	AT may be longer for some tests	Non Standard			date):				Ebitedy Seal (march		Yes i No (
OJECT:	Dunmore Quarterly Methane Te		ALS QUO	race Organics) TE NO.; WO/0	30/19 TENDER				SEQUE	NCE NUME	ER (Circ		Francica raceipi/?	/ fiozen ice	риже раз	antingon _{Yes} i No 🖌
DER NUMBER:								coc: t	2	34	5	67			mpalaturo d	m Receipt: "E
JECT MANAGER	Rvan Stirling		1					OF: 1	2	34	5		Otherc	1. A. P. A.		
IPLER:		SAMPLER N	IOBILE:		RELINQUISHED E			RECEIVED	BY:			RELI	NQUISI	ED BY:		RECEIVED BY:
emailed to ALS?	(YES / NO)	EDD FORMA	AT (or defau	uit):	DATE/TIME:	hael		A	معہ	fe						
il Reports to :	<u> </u>				DATE/TIME:			A DATE/TIME 1311	5	, . , .		DATE	TIME:			DATE/TIME:
ail Invoice to :					7 13 121	23		131	274	~う						
MENTS/SPECIAL	HANDLING/STORAGE OR DISPO	SAL: CC reports to:														
						ANALY		QUIRED in	cluding	n SHITES	(NB Suite (odes mus	t he liste	to attract	suite orice)	7
ALS USE ONLY		PLE DETAILS Solid(S) Water(W)		CONTAINER INF	FORMATION			ire required, sp		-						Additional Information
CARDON CONTRACTOR OF CONTRACTOR																Comments on likely contaminant levels, dil or samples requiring specific QC analysis e
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo												
	Methane	13/12/23	w			1										
	····										1		i		1	1
							-							Divis		
											Wolle	ongor	ng	ference		
				-								ск Ого \\\/))))))56	26	
							_					. V V Z	201	100	30	· · · ·
							+						161.7	W.L.		
													\mathbb{N}			
												III D.V	10			
															1 5 88 9	
							-				Telepho	one : 02 4	122531	26		
		-								A. 4	~+				. .	···
			1													
							+									
							_									
					TOTAL 1	,										

			ALS Landf	fill Emissions Re	port	(ALS)
Client: Site:	Shellharbour City C Dunmore	Council		Date: Sampler(s)	13/12/2023 Robert DaLio, Michael Santos	
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments	
	A				No Safe Access	
			•			
	в 1	6168 226	302 435	2.3		
	в 2	6168 253	302 437			
				2.3		
	B 3	6168 274	302 437	2.3		
	в 4	6168 296	302 439	2.4		
	C 1	6168 434	302 375			
	c 2	6168 380	302 375	2.4 2.7		
	c 3	6168 322	302 406	2.4		
	c 4		302 416	2.5		
	C 5		302 421	2.4		
	C 6	6168 133	302 417	2.3		
(с 7	6168 072	302 408	2.3		
	с 8	6168 046	302 405	2.3		
		I.	1			
	D 1	6168 138	302 396	2.4		
	D 2	6168 147	302 394	2.3		
	D 3	6168 153	302 392	2.4		
	D 4	6168 163	302 389	2.4		
	D 5		302 390	7.8		
	D 6	6168 178	302 391	3.6		
	D 7	6168 188	302 389	2.6		
	D 8 D 7	6168 198 6168 223	302 385 302 383	2.7 2.7		
		0100 220	002 000	2.1		
	E 1	6168	302		Overgrown	
	E 2		302		Overgrown	
	Е 3	6168 138	302 376	2.3		
	E 4	6168 146	302 376	2.3		
	E 5		302 376	2.3		
	E 6	6168 158	302 373	2.2		
	E 7	6168 165	302 372	2.3		
	E 8	6168 176	302 367	2.3		
	E 7		302 362	2.3		
	E 8	6168 194	302 377	2.2		
	F 1					
			302 356	2.4		
	F 2 F 3	6168 121	302 358	2.3		
			302 352	2.2		
	F 4 F 5	6168 143 6168 153	302 348 302 337	2.3 2.3		
	F 6		302 337	2.3		
	1					
(G 1	6168 407	302 256	2.6		
	G 2		302 291	2.4		
(G 3		302 322	2.4		
(G 4	6168 462	302 358	2.4		
	+					
	H 1	6168 433	302 261	2.9		
	н 2 н 3	6168 394	302 220	2.9		
	H 3 H 4	6168 352	302 182	2.9		
	н 4 Н 5	6168 327 6168 274	302 155 302 101	2.8		
	H 5 H 6	6168 274 6168 237	302 101 302 076	2.8		
		6168 186	302 076	2.8 2.7		
	4 7		001.014	2.1		
	н 7 н 8		301.063	2.6		
	н 8	6168 123	301 063 302 66	2.6 2.4		
1	н 8	6168 123 6168 071	301 063 302 66 302 104	2.6 2.4 4.8		

1		6167 946	302 185	9.5	
	1 13	6167 913	302 218	7.2	
1	1 14	6167 877	302 259	4.4	
	1 15		302 309	2.7	
	1 16		302 356	5.0	
	1 17	6167 880	302 391	3.7	
			302 424	6.8	
	1 19	6167 897	302 462	23.3	
ł	1 20	6167 904	302 483	2.6	
	1 21	6167 159	302 536	3.3	
	1 22		302 630	3.4	
1		6167 113	302 630	3.4	
			302 607		
				3.4	
	1 25		302 590	3.4	
	1 26		302 573	3.4	
	1 27		302 546	3.4	
	1 28	6168 291	302 538	3.4	
	1 29	6168 324	302 543	3.3	
	4 30		302 550	3.4	
	4 31		302 547	3.4	
				3.1	
			302 397		
			302 367	3.0	
			302 330	3.0	
1	1 35	6168 473	302 294	2.9	
	1 1	6168 179	302 244	2.4	
	1 2	6168 170	302 208	2.4	
	3	6168 152	302 157	2.4	
	4	6168 146	302 88	2.4	
	J 1	6168 338	302 180	2.5	
	J 2	6168 317	302 198	2.5	
	J 3	6168 293	302 217	2.5	
	-				
	J 4	6167 252	302 234	2.5	
	J 5	6167 214	302 246	2.5	
	< 1				
		6168 525	302 385	2.4	
1	< 2	6168 539	302 425	2.1	
	< 3	6168 561	302 461	2.0	
	< 4				
		6168 592	302 412	2.0	
	< 5	6168 568	302 368	1.9	
	1	6168 746	302 330	2.9	
	2	6168 702	302 301	2.7	
	3		302 261	2.5	
		6168 631	302 243	2.2	
		6168 592	302 221	2.0	
	- 6	6168 568	302 197	1.8	
ompressor Shed	1			8.7	
ffice	1			3.1	
community Recycling Centre	1			3.0	
LD Weighbridge				3.6	
LD Weighbridge Toilet	1			9.3	
evolve Shop	1			2.4	
uilding Truckwash	1			2.5	
lew Weighbridge	1			3.4	
	1				
lethane Blank (Pre testing)				2.5	Taken at entrance to Dunmore site before main gate
lethane Blank (Post testing)				2.5	Taken at entrance to Dunmore site before main gate
omments:					
ampling performed in accordar	ce to EPA Environme	ental Guidelines Solid Waste	Landfills, Second Edition 2	016	
as concentrations are reported	as raw values withou	t correction for background of	oncentration.		

	Mandatory Fields			С	HAIN (OF CUS	TODY											
CLIENT CC	DDE: SHECIT	*PROJECT MANAGER:	Ryan :	Stirling			SAMPL	ER:		SAN		BY ALS			- Pag	geof_	-	
*CLIE		*PM MOBILE:		· · ·			SAMPI MOBI			02	4225 3	3125			C	oC #: (if applicable	, ,	A
OFF (Invoiced Of	flice) Shellharbour	ALS QUOTE # (Client PL if blank)	WO/030/	19 TENDER			PURCHA ORDER N				15681	0			1			
PROJ NO./PROJE		Testing						TE:			Dunmo	re			-			
*INVOICE (client default)	TO: <u>Financial@shellharbour.nsw.gov.au</u> if nil)				i i i i Na si i i i								CC Inv	/oice to		В		
REPORTS	AAIL Ryan.stirlingshellharbour.nsv TO: Mitchell conasshell	.gov.au, Glenn.h	oldenshellharbour.nsw.g .au, lab@enrs.com.au	gov.au,									741			ry of Origin:		
(default to l bi	lank)	narooqi aisw.gov	.au, abeenis.com.au		Mai	(NB. Where Metals k an X in the I	ALS Quote No. i are required, sp boxes below i	pecify Total is	nfiltered bot	ttle remired)	or Disenhart	field filtered	hault in a	ed). sample.	(if not Australia)			
P Standard Stu S S	NGE REQUIREMENTS □ Standard Stor Visese check box. □ Extended Stor orage time from receipt of samples: Specify Visposal Date: Specify Vaters - 3 weeks Note: Extended storage Incurs a trequires a signed agreement	age (Not all tests contact Client infor	IAROUND 5+ day check bax. → 3 day (an be expedited, Services for more 2 day (mation) 2 day (1 day (+30%)											Environmental Division Wollongong Work Order Reference EW2401405			5
ALS Use Only Lab ID	Sample ID	Depth	Date/Time	No. Bottles MATRIX: Soii/Solid(s) Water(W) Sediments	DJ, Dust (D), Froduct (P), Biota (B), osolid (BS) Sunface Mt										Lab OC (additional bottles req.) Additional Information (Comment on hazards - e.g., asbestos, know)			, asbestos, known
1	Mathane	·	21/3/24.	2 2 3	2 dd - X		신상 모두				<u>dia 1</u> 53	유민하다			Dup MS high contamination)			ation)
			A13121.			_		_										
						-											,	
																	,	
													+					
						+								_			<u> </u>	
	· · ·	·	-				<u> </u>											·
							:				-							
						+						+	$\left - \right $					
		None Receipt	MA: «	℃ Security C Intac (circle	t Yes a)	/ No /	(A(Non))	Carrier Details Con Not	L		ourier/Post			(Packaging (Circle)		sky Foam Esky #	Box/Bag/Other # D/A
Relinquished by:	Michael	IV LS.	Date/ Time: Date/	21/312	4	Received	_ n	nefi	7		Signa		Ø	2	\sim		ate/ ZI	3124
			Time:			Received I	iy:				Signa	iture					ate/ me:	

.

			ALS Landf	ill Emissions Re	port	Å
Client:	Shellharbour City C Dunmore	ouncil		Date: Sampler(s)	21/03/2024 Robert DaLio, Michael Santos	
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments	
	A			On Conce (ppin)	No Safe Access	
E	в 1	6168 218	302 433	3.2		
E	В 2	6168 250	302 437	3.5		
	в 3	6168 269	302 438	3.2		
E	в 4	6168 290	302 438	3.4		
,	C 1	C400 400	200.075			
	C 2	6168 436 6168 392	302 375 302 382	3.5		
	с з	6168 320	302 405	6.3		
	c 4	6167 256	302 414	3.5		
	C 5	6167 200	302 420 302 423	4.6		
	c 7	6168 073	302 423	3.5 3.4		
	с 8	6168 065	302 400	3.5		
			1			
	D 1 D 2	6168 155	302 398	3.5		
	D 2 D 3	6168 162 6168 176	302 400 302 400	3.6		
	D 4	6168 154	302 390	3.2		
1		6168 164	302 388	3.1		
	D 6	6168 169	302 389	3.2		
	D 7 D 8	6168 180 6168 189	302 389 302 382	3.3 3.4		
	D 7	6168 200	302 382	3.4		
	E 1	6168	302		Overgrown	
	E 2 E 3	6168 6168 139	302 302 376	3.5	Overgrown	
	E 4	6168 144	302 370	4.9		
E	E 5	6168 150	302 372	3.9		
	E 6	6168 158	302 373	3.5		
	E 7 E 8	6168 166	302 373 302 366	3.4 3.4		
	E 8	6168 157	302 366	3.4		-
F	F 1	6168 142	302 304	3.5		
	F 2	6168 148	302 348	3.6		
1	F 3	6168 150 6168 153	302 330 302 337	3.9		
		6168 160	302 337	4.8		
	F 6	6168 167	302 332	3.9		
0		6168 403 6168 408	302 251 302 266	4.1		
	3 3	6168 422	302 285	4.5		
0	G 4	6168 462	302 354	4.1		
	н 1		302 558	3.4		
		6168 348 6168 321	302 558	3.4		-
		6168 289	302 540	3.6		
	н 4	6168 250	302 536	3.6		
1	H 5	6168 222	302 556	3.6		
	H 6 H 7	6168 185 6168 144	302 573 301 595	3.7 4.3		
	н 7	6168 123	301 595	4.5		
1		6168 099	302 631	5.2		
			302 607	3.2		
1	H 11 H 12	6167 077	302 580 302 554	13.2 3.3		
i	H 12 H 13		302 534	3.2		
ŀ	н 14	6167 049	302 89	3.3		
1		6167 005	302 132	3.2		
	H 16 H 17		302 159 302 175	3.4 3.3		
	H 17 H 18		302 175	3.3		
ł	H 19	6167 874	302 250	3.3		
	H 20		302 312	3.3		
	H 21 H 22	6167 879	302 380 302 420	3.3 3.7		
	H 22 H 23	6167 890	302 420 302 490	3.7		
	H 24		302 499	3.9		
ŀ		6168 090	302 510	3.7		
	H 26		302 518	3.8		
•	H 27 H 28	6168 198 6168 250	302 520 302 520	4.3 5.0		
			302 530	4.2		
	н 30	6168 339	302 533	3.6		
		6168 446	302 507	3.8		
1		6168 490 6168 482	302 300 302 300	3.7 3.5		
,						
ŀ		6168 468	302 302	3.8		

			1	1	1
	1	6168 180	302 240	0.2	-
	1 2	6168 172	302 240	8.3 7.6	t
		6168 160	302 210	4.0	t
	1 4	6168 149	302 135	3.2	
					T
		6168 322	302 212	57	
					t
	J 2	6168 292	302 217	4.6	H
	J 3	6168 255	302 228	5.8	4
	J 4	6167 236	302 238	5.3	2
	J 5	6167 212	302 240	5.9	
	к 1	6168 525	302 389	25	ſ
				3.5	ł
	K 2	6168 543	302 456	3.3	4
	к 3	6168 579	302 460	3.3	4
	к 4	6168 591	302 411	3.5	
,	к 5	6168 565	302 374	3.4	
	L 1	6168 758	302 340	3.5	Ē
	L 2	6168 721	302 310	3.6	
'	1 3	6168 701	302 300	3.6	F
	1 4	6168 682	302 285	3.5	T
	1 5	6168 662	302 265	3.5	
	L 6		302 239	3.5	
					1
Compressor Shed	1			3.6	
Office	1			3.8	Γ
Community Recycling Centre	1			5.0	T
OLD Weighbridge				4.7	
					H
OLD Weighbridge Toilet	1			4.0	H
Revolve Shop	1			3.5	H
Building Truckwash New Weighbridge	1			3.7 3.7	H
New Weighbridge				3.1	-
	1				_
Methane Blank (Pre testing)				3.4	4
Methane Blank (Post testing)				3.6	
					-
Comments:					
Comments: Sampling performed in accordar Gas concentrations are reported	nce to EPA Environme	ental Guidelines Solid Waste	Landfills, Second Edition, 2	'016	

	Mandatory Fields			CHA		FCUS	TODY	1										
CLIENT	CODE: SHECIT	*PROJECT MANAGER:	Ryan S	Stirling			SAM	PLER:		SAM		BY ALS			Page	of		
*CI	IENT: Shellharbour City Council	*PM MOBILE:	······································					IPLER BILE:		02	4225 3	3125			CoC #:	(if applicable)		
(Invoiced	FFICE: Shellharbour	ALS QUOTE # (Client PL if blank)	WO/030/1	9 TENDER			PURCH	HASE			15681	0						
	DJECT Durante Outstands Surface Mathema							SITE:			Dunmo	re						
*INVOIC (client defa	E TO: Financial@shellharbour.nsw.gov.au		· · · · · · · · · · · · · · · · · · ·							:				voice to M		BIOSE		
* REPOR (default			.au, lab@enrs.com.au			/here Metals	beriuper ere	* A1 No. and/or Analys I, specify Total (un w w analysis to i i	filtered bott	s must be li le required)	sted to attract or Dissolved	(field filtered l	<i>price)</i> bottle require	ed).		ronmenta	al Division	
	RAGE REQUIREMENTS ☐ Standard Stor Please check box. ☐ Extended Stor → ☐ Extended Stor Storage time from receipt of samples: Specify Disposal Date: Waters - 3 weeks Note: Extended storage incurs a regulres a signed agreement	rage (Not all tests of contact Client infor	IAROUND 5+ day check box. → 3 day (san be expedited, Services for more mation) 2 day (1 day (+30%)	hane -											ongong ork Order F W24)
ALS Use		<u></u>		No. Bottles MATRIX: Soil/Solid(S) Water(W) Sediments (SD). DurOduct (P). Biota (B). Riseerid (RS)	Surface Mthane										Lab QC	none · 02 42253	ditional Information	
Only Lab 1D	Sample ID	Depth	Date/Time	No. Bottles MATRIX: Soil/Solid(-	(additional bottles req.) Dup MS	(Comment on	hazards - e.g., asbes igh contamination)	
	Mathane		14/6/24		X													
Receipt Detail (Lab Use ONLY)	ice: Ice Bricks: Chilling Methad: Frozen / Melted Frozen / Thawed	None Receipt	°C °C	C Security Se C Intact (<i>circle</i>)	al Yes	/ No /	NA(Nor	Carrier Details Con No			Courier/Post	:		(Packaging: (Circle) Count	Hard Esky	Foam Esky Bo	ox/Bag/Other
Relinquished	by: MIChael Signatu		Date/ Time:	9/6/24	1.	Received	by:	Ane	ten		Sig	nature	Ĵ	Ż	\mathcal{D}	Date/ Time:	19/6/2	24.
Relinquished	by: Signate	ire:	Date/ Time:			Received	by:				Sig	nature				Date/ Time:		

			ALS Land	Ifill Emissions R	eport
lient: ite:	Shellharbour City Dunmore	Council		Date: Sampler(s)	19/06/2024 Robert DaLio, Michael Santos
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
	A			Citt Cone (ppin)	No Safe Access
	в	1 6168 225	302 436	5.0	
	в	2 6168 245	302 438	3.5	
	в	3 6168 273	302 439	2.6	
	в	4 6168 296	302 439	2.7	
			1		
	c	1 6168 434	302 375	2.8	
	<u>c</u> :		302 394	2.8	
		3 6168 318 4 6167 265	302 406 302 418	2.8 2.8	
		5 6167 196	302 418	2.8	
		6 6168 106	302 413	2.7	
	с	7 6168 048	302 406	2.7	
		1 6168 148	302 398	3.5	
		2 6168 160 3 6168 170	302 400 302 400	3.6 3.2	
		4 6168 177	302 400	3.2	
		5 6168 186	302 388	3.1	
	E		302 333	4.5	
		2 6168 221	302 335	6.1	
		3 6168 212 4 6168 206	302 336 302 342	6.3 12.1	
		5 6168 194	302 342	4.2	
		6 6168 181	302 357	5.3	
	E	7 6168 161	302 369	6.1	
	E	8 6168 145	302 384	3.4	
	_				
		1 6168 146	302 349	10.8	
		2 6168 157 3 6168 166	302 343 302 339	10.1 8.2	
		4 6168 174	302 333	5.7	
		5 6168 181	302 331	6.2	
	F	6 6168 194	302 327	4.6	
	G	1 6168 408 2 6168 426	302 248 302 292	2.6 2.5	
		3 6168 449	302 326	2.6	
		4 6168 469	302 357	2.6	
		1 6168 487	302 329	2.5	
		2 6168 444 3 6168 412	302 370	2.6 2.6	
		3 6168 412 4 6168 374	302 329 302 203	2.6	
		5 6168 331	302 203	2.5	
		6 6168 301	302 127	2.4	
		7 6168 266	301 096	2.5	
		8 6168 189	301 079	2.6	
	<u>н</u> н 1	9 6168 141 0 6168 071	302 068 302 062	2.5 2.5	
	н 1 н 1		302 062	4.8	
	н 1:		302 162	2.8	
	н 1:	3 6167 949	302 181	2.7	
	H 14		302 243	2.8	
	H 1		302 312	2.8	
	<u>н</u> 10 н 11		302 369 302 444	2.7	
	<u>н 1</u> н 1		302 444 302 529	2.8 2.8	
	н 1		302 548	2.0	
	Н 2		302 568	2.7	
	н 2	1 6167 076	302 584	3.0	
	H 2		302 625	2.6	
	H 23		302 625	3.1	
	H 24		302 605 302 585	3.4 3.6	
	H 2		302 585	3.6	
	н 2		302 542	3.0	

Sampling performed in accordance Sas concentrations are reported a	e to EPA Environmer as raw values without	ntal Guidelines Solid Waste correction for background of	Landfills, Second Edition, 20 concentration.	016	
Comments:					
	1			2.3	
lethane Blank (Pre testing) lethane Blank (Post testing)				2.7 2.5	Taken at entrance to Dunmore site before main gate Taken at entrance to Dunmore site before main gate
w Weighbridge	1			3.4	
uilding Truckwash	1			2.6	
evolve Shop	1			3.1	
LD Weighbridge Toilet	1			2.7	
LD Weighbridge	1			2.7	
ommunity Recycling Centre	1			3.7	
ffice	1			3.3	
Compressor Shed	1			2.6	
L	6	6168 642	302 241	2.5	
L	5	6168 664	302 268	2.5	
L	4	6168 679	302 284	2.5	
L	3	6168 704	302 307	2.5	
L	2	6168 735	302 327	2.5	
L	1	6168 757	302 339	2.5	
к	5	6168 571	302 370	2.6	
к	4	6168 595	302 432	2.6	
К	3	6168 559	302 460	2.5	
К	2	6168 542	302 428	2.5	
К	1	6168 529	302 393	2.6	
J	5	6167 194	302 255	2.5	
	4	6167 236	302 241	2.5	
-	3	6168 276	302 227	2.5	
J	2	6168 317	302 209	2.6	
J	1	6168 349	302 194	2.5	
	4	6168 181	302 242	3.2	
	3	6168 153	302 098	7.6 4.0	
I	1	6168 147 6168 150	302 072 302 098	8.3	
Н	29	6168 357	302 543	2.7	
Н		6168 327	302 454	2.8	

	Mandatory Fields				CHAI	N OF	CUS	TOD	Y									Pag	e	_of		
CLIENT CO	ODE: SHECIT	*PROJECT MANAGER:	Ryan S	tirling	· . ·			SAM	IPLER:			SAN	IPLED	BY A	LS				-			
+CLI	ENT: Shellharbour City Council	*PM MOBILE:							APLER DBILE:			02	4225	5 312	5			Co	C #: (if ap	oplicable)	A	S
OFI (Invoiced C	FICE: Shellharbour	ALS QUOTE # (Client PL if blank)	WO/030/1	9 TENDE	R			PURC ORDER					1568									
PRO NO./PROJ		Testing							SITE:				Dunm	ore						_		
*INVOICI (client defaul	ETO: Financial@shellharbour.nsw.gov.au							na siy Na siy	s taba						. 🗖	CC Inv P	oice to M			BIOSEC	URITY	
REPORT: (default to	p Mi if blank	harbour.nsw.gov	.au, lab@enrs.com.au		·harge)	M Maik a	(NB.) here Metals n X in the I	ALS Quote I are require boxes beli	d, specify	r Analysis S Total (unfilt	tered bottle	must be i required	isted to att) or Dissolv	ved (field fi	iltered bot	tle require	id). iample.	(if not Er		nmental		<u>ן</u>
Standard :	AGE REQUIREMENTS Please check box. → Standard Stor Please check box. → Extended Sto Sorage time from receipt of samples: Waters - 3 weeks Soils - 2 months S	rage (Not all tests c contact Client infor fee and	LAROUND S+ day check box, ⇒ 3 day (an be expedited, Services for more 2 day (mation) 1 day (+15%) +30%)		Mthane												v	EV	igong Order Re V24(terence)434	6
ALS Use Only	Sample ID	Depth	Date/Time	No. Bottles	MATRIX: Soli/Solid(\$) Water(W) Sodiments (SD), Dust(D), Product (P), Biota (B), Biosolid (B\$)	Surface Mthane												tab (additi bottles	OC ional req.)	(Comment on	litional Inform	isbestos, known
Lab ID				ă	MA Soil Bio				<u> (1</u> 944)						994) 1	303.3		Dup	MS			,
	Mathane		1919124			X														<u> </u>	<u> </u>	
										_												
																	+			·		
Receipt Detail (Lab Use	Chilling Ice: Ice Bricks: Chilling Frozen / Melted Frozen / Thawed	None Receipt	°C N°CA	 	Security Sea Intact (circle)	l Yes	/ No		7	Carrier Details Con Not	:e# ·		Courier/		40		Client	Packagir (Circle) Count	ng:	Hard Esky #	Foam Esky #	Box/Bag/Othe # NA
ONLY) Relinquished	by: Michael Signa		Date/ Time:	19	1912	Ч	Receive	d by:		An	et	5		Signatu		X	S	\geq	·····	Date/ Time:	191	9124
Relinquished		iture:	Date/ Time:				Receive	d by:						Signatu	re					Date/ Time:		

			ALS Land	ill Emissions R	eport ALS
Client: Site:	Shellharbour City C Dunmore	ouncil		Date: Sampler(s)	19/09/2024 Robert DaLio, Michael Santos
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
А					No Safe Access
в	1	6168 219	302 433	6.1	
в	2	6168 244	302 439	0.0	Methane Cage
в	3	6168 266	302 442	0.1	
в	4	6168 288	302 442	0.1	
В	5	6168 306	302 442	0.0	
c	1	6168 436 6168 402	302 377 302 385	0.0	
ç	3	6168 358	302 397	0.0	
c	4	6167 315	302 410	0.0	
с	5	6167 270	302 417	0.0	
С	6	6168 226	302 422	0.0	
С	7	6168 176	302 422	0.0	
с с	8	6167 136	302 415	6.1	
C		6168 100 6168 063	302 410 302 407	0.1	
D	1	6168 139	302 388	0.9	
D	2	6168 149	302 386	0.0	
D	3	6168 163	302 382	0.0	
D	4	6168 178	302 379	0.0	
D	5	6168 196 6168 215	302 373 302 376	0.0	
D	7	6168 224	302 376	0.0	Methane Cage
D		6168 233	302 378	0.0	
D	9	6168 249	302 381	0.0	
				1	
E		6168 146	302 374	0.0	
E	2	6168 165 6168 180	302 365 302 358	0.0	
E	4	6168 222	302 350	0.0	
E		6168 223	302 344	0.0	
E	6	6168 229	302 338	0.0	
F		0400 400	000.040		
F		6168 160 6168 148	302 340 302 342	0.3	
F		6168 157	302 342	0.0	
F	4	6168 167	302 333	0.0	
F	5	6168 183	302 330	0.0	
F	-	6168 200	302 328	0.0	
F	6	6168 227	302 325	0.0	
G	1	6168 409	302 257	0.0	
G		6168 419	302 288	0.0	
G		6168 435	302 315	0.0	
G	4	6168 451	302 342	0.0	
		-	+ _		
н	1	6168 449	302 540	0.0	
н	2	6168 398 6168 340	302 560 302 550	0.0	
н	4	6168 289	302 550	0.0	
Н	5	6168 216	302 567	0.0	
н	6	6168 172	302 594	0.0	
Н		6168 140	301 614	0.0	
<u>н</u>	8	6168 113	301 632	0.0	
Н	9	6168 083 6168 081	302 626 302 578	0.0	
н		6168 127	302 578	0.8	
н	11		1		
н	11	6168 154	302 529	1.0	
<u>н</u> н	12	6168 440	302 506	0.0	
н н н	12 13 14	6168 440 6168 456	302 506 302 483	0.0	
н	12 13 14 15	6168 440 6168 456 6168 477	302 506 302 483 302 461	0.0 0.0 0.0	
н	12 13 14 15 16	6168 440 6168 456 6168 477 6168 495	302 506 302 483 302 461 302 442	0.0 0.0 0.0 0.0	
н	12 13 14 15 16 17	6168 440 6168 456 6168 477 6168 495 6168 486	302 506 302 483 302 461 302 442 302 356	0.0 0.0 0.0 0.0 0.0	
н	12 13 14 15 16	6168 440 6168 456 6168 477 6168 495	302 506 302 483 302 461 302 442	0.0 0.0 0.0 0.0	
н	12 13 14 15 16 17 18	6168 440 6168 456 6168 477 6168 495 6168 486 6168 448	302 506 302 483 302 461 302 442 302 356 302 279	0.0 0.0 0.0 0.0 0.0 0.0	
н	12 13 14 15 16 17 18 19	6168 440 6168 456 6168 477 6168 495 6168 486 6168 448 6168 390	302 506 302 483 302 461 302 442 302 356 302 279 302 217	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н	12 13 14 15 16 17 18 18 19 20 20 21 21 22	6168 440 6168 456 6168 477 6168 495 6168 486 6168 448 6168 338 6168 338 6168 279 6168 206	302 506 302 483 302 481 302 442 302 356 302 279 302 277 302 165 302 109 302 076	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н	12 13 14 15 16 17 18 19 20 20 21 21 22 23	6168 440 6168 456 6168 477 6168 495 6168 485 6168 488 6168 389 6168 338 6168 279 6168 206 6168 146	302 506 302 483 302 481 302 442 302 356 302 279 302 217 302 165 302 109 302 076 302 070	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н н н н н н н н н н н н н н н н н н н	12 13 14 15 16 16 17 18 19 20 21 20 21 22 23 23 24	6168 440 6168 456 6168 477 6168 485 6168 485 6168 488 6168 390 6168 338 6168 279 6168 206 6168 146 6168 051	302 506 302 483 302 481 302 442 302 356 302 279 302 217 302 105 302 109 302 070 302 070 302 070	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н	12 13 14 16 16 17 18 19 20 21 22 23 23 24 25	6168 440 6168 456 6168 477 6168 495 6168 485 6168 489 6168 390 6168 338 6168 279 6168 279 6168 206 6168 146 6168 051 6167 989	302 506 302 483 302 481 302 442 302 356 302 279 302 217 302 109 302 109 302 070 302 070 302 070 302 109	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н н н н н н н н н н н н н н н н н н н	12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26	6168 440 6168 456 6168 477 6168 495 6168 486 6168 390 6168 390 6168 390 6168 279 6168 205 6168 206 6168 146 6168 051 6167 989 6167 945	302 506 302 483 302 461 302 442 302 356 302 279 302 217 302 165 302 109 302 076 302 070 302 070 302 079 302 148	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
н н н н н н н н н н н н н н н н н н н	12 13 14 15 16 17 18 19 20 21 20 21 23 23 23 23 24 24 25 26	6168 440 6168 456 6168 477 6168 495 6168 485 6168 489 6168 390 6168 338 6168 279 6168 279 6168 206 6168 146 6168 051 6167 989	302 506 302 483 302 481 302 442 302 356 302 279 302 217 302 109 302 109 302 070 302 070 302 070 302 109	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

н	31	6167 894	302 450	8.4	
н	32	6167 901	302 485	0.0	
	1	6168 148	302 089	0.0	
	2	6168 154	302 120	0.0	
	3	6168 164	302 161	0.0	
1	4	6168 174	302 225	0.0	
	1	6168 197	302 251	0.0	
		6168 222	302 243	0.0	
		6168 261	302 230	0.0	
J					
J	4	6167 294	302 217	0.0	
L	5	6167 328	302 194	0.1	
				-	
к	1	6168 526	302 394	0.0	
к	2	6168 239	302 431	0.0	
к	3	6168 558	302 463	0.0	
к	4	6168 590	302 431	1.2	
к	5	6168 577	302 382	0.0	
ĸ	6	6168 555	302 373	0.0	
	Ū	0100 000	002 010	0.0	
1	1	6168 750	302 341	0.0	
	2	6168 717	302 309	0.0	
1	3	6168 676	302 279	0.0	
	4	6168 652	302 253	0.0	
	5	6168 606	302 232	0.0	
L	6	6168 572	302 204	0.0	
Compressor Shed	1			0.0	New building Shipping Container
Office	1			1.0	non beneary on point container
Community Recycling Centre	1			0.0	
OLD Weighbridge	1			0.8	
OLD Weighbridge Toilet	1			0.1	
Revolve Shop	1			0.0	
Building Truckwash	1			0.0	
New Weighbridge	1			0.0	
Methane Blank (Pre testing)				0.0	Taken at entrance to Dunmore site before main gate
Methane Blank (Post testing)				0.0	Taken at entrance to Dunmore site before main gate
Comments:					
Sampling performed in accordance Gas concentrations are reported a	e to EPA Environme as raw values without	ental Guidelines Solid Waste correction for background co	Landtills, Second Edition, 2 oncentration.	016	

Appendix E: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events

ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	Cl. Sydney: 277 Woodpark Rd Ph: 02 8784 8555 Eisamples e Cl. Newcastle: 5 Rosegum Rd Ph:02 4968 9433 Eisamples.n	sydney@alsenvira.com Ph 07,3243,7222 . Warabrook NSW 2304 □ Townsville:	Shand St, Stofford QLD 4053 Eisemples brisbane@alsenvi 14-15 Desma Ct, Bohte QLD 4 Ei iownsville envirormente@eise	ocom Phr03 8 818 ⊡ Ad	lbourne: 2-4 Westall (549-9600 E: samples elaide: 2-1 Burma Ro 8359 0890 E.adelaid	. melbourne@at , Pooraka SA 50	sənvrə.com 095	 D Perth: 10 Hod Way Malaga WA 67 Ph: 08 9209 7655 E: samples.perth@r D Launceston: 27 Wellington 51, La: Ph: 03 6331 2158 E. launceston@ala 	alsenviro.com unceston TAS 7250
CLIENT:	Shellharbour City Council	1	URNAROUND REQUIREMENTS :	Standard TAT (Lis	st due date):		· · ·		FOR LABORATORY US	E ONLY (Circle)
OFFICE:			Standard TAT may be longer for some tests . g. Ultra Trace Organics)	Non Standard or u	irgent TAT (List d	ue date):			Custody Seal Infact?	e
PROJECT:	Dunmore Landfill Overflows		ALS QUOTE NO .: WO/030/19 TENE				QUENCE NUM	BER (Circle	Free ice / frozen ice bricks p	rësent upori
ORDER NUMBER:	•					coc: 1 ;	2 3 4	56	7 Rendom Sample Temperatu	re on Receipt.
PROJECT MANAG	GER: Ryan Stirling	·······				OF: 1 ;	2 3 4	56	7 Other comment	6.2
SAMPLER:	Robert Och	SAMPLER MO	BILE:	RELINQUISHED BY:		RECEIVED B	/: ·		RELINQUISHED BY:	RECEIVED BY:
COC emailed to AL		EDD FORMAT	(or default):	Robert 1	Detin	And	4			
Email Reports to :	:			DATE/TIME:		DATE/TIME;	,		DATE/TIME:	DATE/TIME:
Email Invoice to :				6.2.2.L	14:3	5 6/2	124			
COMMENTS/SPEC	CIAL HANDLING/STORAGE OR DISPOSAL:	CC reports to:		•						
ALS USE ONLY	SAMPLE D MATRIX: Solid(CONTAINER IN	FORMATION		REQUIRED inclu			odes must be listed to attract suite price	e) Additional Information

						Where	Métals are req	ired, specify Total (unfiltered bottle required) or Dissolved	field filtered bottle required).	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ø					Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
						TSS	Hq				
	SWP1	2.24 14:33	w			1	1				
	<u> </u>										
				· · · · · · · · · · · · · · · · · · ·							
u											· .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									Environm	ental Division	
									Wollongo	ng der Reference 2400576	
									Work Or	0100576	
									EVV	2400070	
											· · · · · · · · · · · · · · · · · · ·
				······							·
				······································						6.840.3 HII	
										e Rienne de l'II	
										人間の時に見る	
					584				Telephone :	2 42253125	<u>,</u>
				TOT	10				•		
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preserv	ved Plastic; ORC = Nitric Preserved	ORC; SH = S	Sodium Hydroxide/Cd Preserved; S = Sodium	Hydroxide Prese	rved Plastic: /	\G = Amber (	lass Unpreserver	: AP - Airfreight Unpreserved Plas	ic	
V = VOA Vial HCI Preserve	ed; VB = VOA Vial Sodium Bisulphate Preser d Bottle: E = EDTA Preserved Bottles: ST = S	rved: VS = VOA Vial Sulfuric Preser	ved: AV = Airfr	aight Uppreserved Vial SG = Sulfuric Presen	ed Amber Glass	; H = HCl pr	eserved Plast	c; HS = HCI pres	erved Speciation bottle; SP = Sulf	ric Preserved Plastic; F = F	ormaldehyde Preserved Glass;



Work Order	EW2400576	Page	: 1 of 2
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 06-Feb-2024 15:26
Order number	: 156810	Date Analysis Commenced	: 06-Feb-2024
C-O-C number	:	Issue Date	15-Feb-2024 14:08
Sampler	: Client		HAC-MRA NATA
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW



The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

# **Analytical Results**

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	 
		Sampli	ng date / time	06-Feb-2024 14:35	 	 
Compound	CAS Number	LOR	Unit	EW2400576-001	 	 
				Result	 	 
EA005FD: Field pH						
рН		0.1	pH Unit	7.7	 	 
EA025: Total Suspended Solids drie	d at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	 

# Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104  $\pm$  2°C



# **CERTIFICATE OF ANALYSIS**

Work Order	EW2401299	Page	: 1 of 5
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 18-Mar-2024 17:00
Order number	:	Date Analysis Commenced	: 18-Mar-2024
C-O-C number	:	Issue Date	: 27-Mar-2024 09:34
Sampler	: Michael Santos		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER CPI 2024		Accreditation No. 825
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
   Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.</li>
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.



### Analytical Results

			Sample ID				
Sub-Matrix: WATER (Matrix: WATER)	Sample ID		SWP1	 			
		Comuli	ng date / time	Point 1 18-Mar-2024 07:30			
			-		 		
Compound	CAS Number	LOR	Unit	EW2401299-001	 		
				Result	 		
EA005FD: Field pH		0.1					
рН		0.1	pH Unit	7.6	 		
EA010FD: Field Conductivity							
Electrical Conductivity (Non		1	µS/cm	753	 		
Compensated)							
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	458	 		
EA025: Total Suspended Solids dried at	104 ± 2°C						
Suspended Solids (SS)		5	mg/L	<5	 		
EA045: Turbidity						1 	·
Turbidity		0.1	NTU	8.2	 		
EA116: Temperature Temperature		0.1	°C	25.2	 		
· ·		0.1	U	23.2	 		
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	232	 		
Total Alkalinity as CaCO3		1	mg/L	232	 		
ED041G: Sulfate (Turbidimetric) as SO4 Sulfate as SO4 - Turbidimetric	2- by DA 14808-79-8	1	mg/L	21	 		
	14000-79-0	·	iiig/L				
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	87	 		
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	37	 		
Magnesium	7439-95-4	1	mg/L	17	 		
Sodium	7440-23-5	1	mg/L	94	 		
Potassium	7440-09-7	1	mg/L	8	 		
EG020F: Dissolved Metals by ICP-MS						 	
Iron	7439-89-6	0.05	mg/L	<0.05	 		
	, 100 00-0		<u> </u>				



### Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 		
			ng date / time	18-Mar-2024 07:30	 		
Compound	CAS Number	LOR	Unit	EW2401299-001	 		
				Result	 		
EG020T: Total Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.175	 		
Iron	7439-89-6	0.05	mg/L	0.36	 		
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.2	 		
EK055G: Ammonia as N by Disci	rete Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.06	 		
EK055G-NH4: Ammonium as N b	y DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.06	 		
EK057G: Nitrite as N by Discrete	e Analyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 		
EK058G: Nitrate as N by Discret	e Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.02	 		
EK059G: Nitrite plus Nitrate as N	N (NOx) by Discrete Ana	lyser			·		
Nitrite + Nitrate as N		0.01	mg/L	0.02	 		
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	7.53	 		
ø Total Cations		0.01	meq/L	7.54	 		
ø lonic Balance		0.01	%	0.08	 		
EP005: Total Organic Carbon (TC	DC)				·	·	·
Total Organic Carbon		1	mg/L	17	 		
EP025FD: Field Dissolved Oxyge	en				·	·	·
Dissolved Oxygen		0.01	mg/L	6.10	 		



### Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

# ALS

# CHAIN OF CUSTODY

ALS Laboratory: please tick →

Sydney: 277 Woodpark Rd, Smithfield NSW 2176
 Dr. 02 8784 8655 Eisamplea.sydney@elsenviro.com
 Newcastle: 5 Rosegum Rd, Warabrook NSW 2304
 Ph:02 4968 9433 Eisamplea.newcastle@alsenviro.com
 Drownsville: 14-15 Desma CL Bohle QLD 4818
 Ph:02 4968 9433 Eisamplea.newcastle@alsenviro.com

Metbourne: 2-4 Westall Rd. Springvale VIC 3171
Ph:03 8549 9600 E. samples.metbourne@atsenviro.com
 Adelaide: 2-1 Burna Rd. Pouraka SA 5095
Ph: 08 9550 0899 Eadelaide@atsenviro.com

□ Perth: 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samplas.perth@sisenvio.com □ Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 633 12163 E launcestron@sisc.com

CLIENT:	Shellharbour City Council		TURNAR	OUND REQUIREMENTS :	Standard TAT (L	ist due dete				·		Distant and the second second		
OFFICE:	41 Burelli St WOLLONGONG NS	W 2500	(Standard T	AT may be longer for some tests race Organics)	Non Standard or			ha).			CONTRACTOR OF THE OWNER OF	which is the state of the states of	JSE ONLY (Circle)	
PROJECT:	Dunmore Quarterly Surface Wate Testing	ers SWP01 Overflow full		TE NO.: WO/030/19 TENE	DER	urgent TAT	(LIST due dat				01960108.9	ly Seal Intect? 97 frozen ice bricks		N/A
ORDER NUMBER:			-					<b></b>		BER (Circle	receip	<b>?</b>		N/A
PROJECT MANAGER	; Joel Culton		- <u> </u>							56		n Sample Tempera	ture on Receipt	
SAMPLER: Mic	had Santos	SAMPLER	MOBILE:	0403590 899	RELINQUISHED BY		06			5 6		comment:	<u> </u>	
COC emailed to ALS?		EDD FORM			M. Sonte		1				RELINQUIS	HED BY:	RECEIVED BY:	
Email Reports to :					DATE/TIME:	9		the	Pa					
Email Invoice to :		· · · · · · · · · · · · · · · · · · ·			-1	11	20	TE/TIME: <b>つ</b> っっ	12-	2 -	DATE/TIME	:	DATE/TIME:	
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	SAL: CC reports to			20.12.23	16	.20	20	12	25				
		· · · · · · · · · · · · · · · · · · ·												
ALS USE ONLY		LE DETAILS Solid(S) Water(W)		CONTAINER INF	ORMATION							ed to attract suite pri	ce) Additional Information	'n
				· · · ·		<u> </u>					T Dissolved (field )	ittered bottle required).		
								otal Mn	Ê)				Comments on likely contaminant leve dilutions, or samples requiring specifi	ils, ic QC
								탕			Nº 1		analysis etc.	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT				न	Lotal	Q	×			·
				(refer to codes below		5		1	99	\$ 3				
							l i i i i i i i i i i i i i i i i i i i	Ē	A G					
						TSS	NT-1,-NT-2A (tonic-Balance)		Dissolved-and	V			-;	
	SWP1	20.12.23 14:35	w			1			- <del>"</del>		+-+			
						<u> </u>						- nº	Field Tests - pH, EC, DO 8	Temp
	<u> </u>	<u> </u>				ļ	<u> </u>				1.	hach	-	
·											08 .0			
						†				-12	515			
									·		V			
											<u>+</u> '	ر 	· · · · · · · · · · · · · · · · · · ·	
												Environme	ental Division	
												Work Ord	g	
· · · ·														
			_				<u> </u>			!	<b></b>		g er Reference 305715	
		<u> </u>							`					
i <del>de sui</del> citai						<u> </u>	<u> </u>							
					TOTAL 10									
<pre>rater Container Codes: P / = VOA Vial HCI Preserved:</pre>	= Unpreserved Plastic; N = Nitric Preserved	ed Plastic; ORC = Nitric Preserved (	ORC; SH = Sc	dium Hydroxide/Cd Preserved; S	= Sodium Hydroxide Pres	Ved Plastic:	AG = Amber G				TT	elephone : 02 422	53125	

V = VOA Vial HCI Preserved VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; CS = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide/Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = VOA Vial Sodium Bisulphate Preserved; S = Bisulphate Solits; B = Unpreserved Bag; V = Airfreight Unpreserved; BV = Vial Vial Solit; VB = HCI Preserved; VB = VOA Vial Solit; SP = Solituric Preserved; BV = Vial Vial Solit; SC = Sulfuric Preserved; BV = Vial Solit; SC = Solituric Preserved; BV = Vial Solit; SC = Solituric; SC = Solituric Preserved; BV = Vial Solit; SC = Solituric; SC = S



# **CERTIFICATE OF ANALYSIS**

Work Order	EW2305715	Page	: 1 of 2
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 20-Dec-2023 15:11
Order number	: 156810	Date Analysis Commenced	: 20-Dec-2023
C-O-C number	:	Issue Date	29-Dec-2023 16:58
Sampler	: Michael Santos		Iac-MRA NATA
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW



### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 $\sim$  = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

### **Analytical Results**

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	 
		Samplii	ng date / time	20-Dec-2023 14:35	 	 
Compound	CAS Number	LOR	Unit	EW2305715-001	 	 
				Result	 	 
EA005FD: Field pH						
рН		0.1	pH Unit	7.5	 	 
EA025: Total Suspended Solids dried	l at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	6	 	 

### Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104  $\pm$  2°C

	Mandatory Fields				CHAIN	N OF (	CUST	ODY								Pao	jeof	
CLIENT (	CODE: SHECIT	*PROJEC MANAGER		Ryan Stirling				SAMPLER	रः		SAM	PLED E	BY ALS			Lag	Je01	
*Cl	IENT: Shellharbour City Cou	ncil *PM MOBILE						SAMPLE MOBILE			02 -	4225 :	3125			Co	C #: (if applicable)	ALS
O (Invoiced	FICE: Shellharbour	ALS QUOTE : (Client PL if blank		WO/030/19 TENDE	R			PURCHAS				15681	)					
PRO NO./PRO	JECT Dunmore Landfill Overflow	Full Testing	,,		· · · ·			SITE	:		C	Dunmo	re				•	
*INVOIC (client defa	ETO: Financial@shellharbour.nsw.gov	<u>v.au</u>				CC Invoice to BIO			BIOSE	CURITY								
REPOR	EMAIL Ryan.stirlingshellha	arbour.nsw.gov.au, G copasshellharbour.ns	lenn.holdenshellha	rbour.nsw.gov.au,			INR AI	Quote No. an					ระเป็น/กระกาณ	d ovica)	<b>.</b>		y of Origin: Australia)	
(default	to PM If (VITCITETTS) blank)	copassilerinar bourins	w.gov.au, iabeenit	s.com.au		Whee Mark an 1	e Metals are	required, spe ces balow an	cify Total (unf	filtered bott	e required) d	or Dissolved	(field filtered	battle require	id). sample.			
Samples.     Disposal Date:       Waters - 3 weeks     Note: Extended storage incurs a fee and requires a signed agreement.         I day (+50%)								/ollongong Work Order F										
Comments ALS Use Only	Sample ID	2	Depth	Wine Vitime	MATRIX: Soil/Solid(S) Water(W) Sediments (SD), Dust (P), Product (P), Biota (B), Biosolid (BS)	0		TOC, NT-4, NH3, Total Mn Dissolved and Total Fe	Field Test pH, EC, DO & Temp							Lab C (additio bottles i	onal Ade reg.) (Comment on	litional Information hazards - e.g., asbestos, known
Lab ID								· · · · · · · · · · · · · · · · · · ·	1							Dup	M5	gh contamination)
	SWP1		7.6.24	- G!H 1	w	X	X	x x	X									
	، 													_				
	·									<u> </u>								
						•												
											1							
 									_					-				
													-					
		riche: Samp							Carrier			ourier/Pos			Client	Packaging	^{g:} Hard Esky	Foam Esky Box/Bag/Other
Receipt Detail (Lab Use ONLY)	lce: Ice Bi Chilling Frozen / Melted Frozen	ricks: Janny Tem / Thawed None at Rece	° 11.3 ° 12	.3 ° (0.( °	Security Seal Intact (circle)			NA(None)	Details Con No	te #		outier/Pos			Clienc	(Circle) Count	#	# # •
Relinquishe	part Daha	Signature: A	. Dul.		6.4.	•	Received b	1 ILW	rel	San	ras		nature				Date/ Time:	7-6-24 14140
Relinquishe		Signature:		Date/ Time:		F	Received b	y:				Sig	nature				Date/ Time:	

. .



# **CERTIFICATE OF ANALYSIS**

Work Order	EW2402690	Page	: 1 of 5
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: +61 2 4225 3125
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 07-Jun-2024 14:45
Order number	: 156810	Date Analysis Commenced	: 07-Jun-2024
C-O-C number	:	Issue Date	: 19-Jun-2024 13:14
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER CPI 2024		The Contraction of the second
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
   Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.



### Analytical Results

			Operation (D)					
Sub-Matrix: WATER (Matrix: WATER)	Sample iD		Sample ID	SWP1				
		Commi	ng date / time	Point 1 07-Jun-2024 09:10				
			-					
Compound	CAS Number	LOR	Unit	EW2402690-001				
				Result				
EA005FD: Field pH		0.4						
рН		0.1	pH Unit	7.7				
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	806				
Compensated)								
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	622				
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	61				
EA045: Turbidity								
Turbidity		0.1	NTU	110				
EA116: Temperature Temperature		0.1	°C	8.2				
· ·		0.1	0	0.2				
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1				
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1				
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	240				
Total Alkalinity as CaCO3		1	mg/L	240				
ED041G: Sulfate (Turbidimetric) as SO4								
Sulfate as SO4 - Turbidimetric	2- by DA 14808-79-8	1	mg/L	154				<b></b>
	14000-73-0		g. =	104				
ED045G: Chloride by Discrete Analyser		1						
Chloride	16887-00-6	1	mg/L	96				
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	49				
Magnesium	7439-95-4	1	mg/L	27				
Sodium	7440-23-5	1	mg/L	132				
Potassium	7440-09-7	1	mg/L	7				
EG020F: Dissolved Metals by ICP-MS					I	[	I	
Iron	7439-89-6	0.05	mg/L	<0.05				
			,					



### Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 		
		Sampli	ng date / time	07-Jun-2024 09:10	 		
Compound	CAS Number	LOR	Unit	EW2402690-001	 		
				Result	 		
EG020T: Total Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.195	 		
Iron	7439-89-6	0.05	mg/L	4.33	 		
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	 		
EK055G: Ammonia as N by Discre	ete Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	3.06	 		
EK055G-NH4: Ammonium as N by	/ DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	3.04	 		
EK057G: Nitrite as N by Discrete	Analyser						
Nitrite as N	14797-65-0	0.01	mg/L	0.13	 		
EK058G: Nitrate as N by Discrete	Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	1.02	 		
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	1.15	 		
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	10.7	 		
ø Total Cations		0.01	meq/L	10.6	 		
ø Ionic Balance		0.01	%	0.57	 		
EP005: Total Organic Carbon (TO	C)				·	·	·
Total Organic Carbon		1	mg/L	14	 		
EP025FD: Field Dissolved Oxyge	n						
Dissolved Oxygen		0.01	mg/L	13.9	 		



### Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C



Appendix F: Calibration Certificates





### Issued by: QED Environmental Systems Ltd.

Calibration certificate number

Instrument

Laser One

16712 H-10352

Serial Number

16712

#### Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	3.07	3	3	3	3.00	0.07	0.01	0.01
1000	9.93	10	10	10	10.00	0.07	0.01	0.01
1000	104.0	102	102	102	102.00	2.00	0.20	0.20
1000	1011	1010	1010	1010	1010.00	1.00	0.10	0.10
						Uncertainty	0.20	%
						Max % error	0.20	% FS

Gas verification from 0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.20	2.20	2.20	2.20	2.20	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.90	49.90	49.90	49.90	0.10	0.10	0.10
100.00	100.00	100.00	100.00	100.00	100.00	0.00	0.00	0.00
						Uncertainty	0.10	%

Max % error 0.10

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error ( % F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.00	2.00	2.00	2.00	2.00	0.00	0.00	0.00
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Uncertainty	0.00	%
Max % error	0.00	% FS

% FS

Page 1 of 2

www.gedenv.com +44 (0) 333 800 0088 sales@gedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM

Registered in England and Wales 1898734





### Issued by: QED Environmental Systems Ltd.

### Environmental conditions during calibration

Temp.	22.7	С
Pressure	971	mBar

#### Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	110241	03/11/2025	N2
3 ppm	303552	29/01/2028	CH4
10 ppm	265827	16/02/2026	CH4
100ppm	S1081135P	27/07/2028	CH4
1000 ppm	S1198731S	14/06/2028	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	1273046T	30/02/2028	CH4
5.0% vol	244842	08/08/2025	CH4
15% vol	268737	08/08/2025	CH4
50% vol	267652	09/05/2025	CH4
100% vol	1262313	09/08/2027	CH4

Calibration results: Pass

Next scheduled calibration: 19/10/2024

Calibration date: 19/10/2023

Issued by: Keeley Knight

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 2 of 2





# Issued by: QED Environmental Systems Ltd.

Calibration certificate number

Instrument

41298 H-09833

Laser One

Serial Number

41298

# Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

0-1000ppm CH4 

Full scale	Gas concentration	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error ( % F.s.)	Maximum error %
(ppm)	(ppm)	(ppm)		0	0.00	0.00	0.00	0.00
1000	0.0	0	0	0	3.00	0.09	0.01	0.01
1000	2.91	3	3	3		0.00	0.00	0.00
1000	10.3	10.3	10.3	10.3	10.30	0.00	0.00	0.00
	101.0	101	101	101	101.00		0.10	0.10
1000	and the second	1010	1010	1010	1010.00	1.00	0.10	0,10
1000	1011	1010				Uncertainty	0.10	%
						Max % error	0.10	% FS

0-100% vol CH4 Gas verification from

Full scale	Gas concentration	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error ( % F.s.)	Maximum error %
(%vol) (%vol)	(70001)		0.00	0.00	0.00	0.00	0.00	
100.00	0.00	0.00	0.00	0.00	2.20	0.00	0.00	0.00
100.00	2.20	2.20	2.20	2.20	5.00	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	15.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	49.90	0.10	0.10	0.10
	50.00	49.90	49.90	49.90	100.00	0.00	0.00	0.00
100.00	100.00	100.00	100.00	100.00	100.00	0.00		
100.00	200,000					Uncertainty	0.10	% % FS
						Max % error	0.10	70 15

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

				de Maximum Maximun		an destant offor		
	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	error (LEL%)	error (%F.s.)	Maximum error %
(%vol)	(LEL%)	(			0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00		0.00	0.00
100.00	0.00		2.00	2.00	2.00	0.00	0.00	0.00
100.00	2.00	2.00	2.00			0.00	0.00	0.00
100.00		50.00	50.00	50.00	50.00	0.00		
100.00	50.00	30.00					0.00	%

Uncertainty 0.00 0.00 % FS Max % error

www.qedenv.com

# +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Page 1 of 2 Registered in England and Wales 1898734





# Issued by: QED Environmental Systems Ltd.

### Environmental conditions during calibration

Temp.	22.6	C
Pressure	998	mBar

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	110241	03/11/2025	N2
3 ppm	292675	17/08/2027	CH4
10 ppm	119779SG	11/04/2024	CH4
100ppm	S1035778	08/03/2028	CH4
1000 ppm	S1500109Y	02/03/2028	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	S1204209S	27/02/2028	CH4
5.0% vol	244842	08/08/2025	CH4
15% vol	268737	08/08/2025	CH4
50% vol	267652	09/05/2025	CH4
100% vol	1262313	09/08/2027	CH4

Calibration results: Pass

Next scheduled calibration: 03/07/2024

Calibration date: 03/07/2023

Issued by: Keeley Knight

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 2 of 2





# Issued by: QED Environmental Systems Ltd.

Laser One

**Calibration certificate number** 

Instrument

19254 H-07052

Serial Number

19254

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error ( % F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	3	3.1	3.1	3.1	3.10	0.10	0.01	0.01
1000	10.3	10.3	10.3	10.3	10.30	0.00	0.00	0.00
1000	102.0	101	101	101	101.00	1.00	0.10	0.10
1000	1001	1000	1000	1000	1000.00	1.00	0.10	0.10
						Uncertainty	0.10	%
						Max % error	0.10	% FS

#### Gas verification from 0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error ( % F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.20	2.20	2.20	2.20	2.20	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.90	49.90	49.90	49.90	0.10	0.10	0.10
100.00	100.00	99.90	99.90	99.90	99,90	0.10	0.10	0.10
						Uncertainty	0.10	%

Uncertainty Max % error 0.10

0-100% CH4 LEL (0-4.4% VOL) Gas verification from

Average Maximum Maximum Maximum error Full scale **Gas concentration Response 1 Response 2 Response 3** response error error (LEL%) % (LEL%) (LEL%) (%vol) (LEL%) (%vol) (LEL%) ( % F.s.) 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 1.33 2.00 100.00 2.00 0.00 2.00 2.00 100.00 0.00 0.00 0.00 0.00 50.00 50.00 50.00 50.00

Uncertainty	50.00	%
Max % error	50.00	% FS

% FS

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 1 of 2





### Issued by: QED Environmental Systems Ltd.

Environmental conditions during calibration

Temp.	19.9	C
Pressure	1009	mBar

#### Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	S1261680T	16/05/2024	N2
3 ppm	131394SG	21/11/2025	CH4
10 ppm	119779SG	11/04/2024	CH4
100 ppm	S1385429W	18/01/2026	CH4
1000 ppm	1490137	23/08/2026	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	S1672767FF	18/07/2026	CH4
5.0% vol	217147	03/12/2024	CH4
15% vol	269223	07/11/2023	CH4
50% vol	189051SG	23/02/2024	CH4
100% vol	S1182097S	15/11/2025	CH4

Calibration results: Pass

Next scheduled calibration: 28/02/2025

Calibration date: 28/02/2022

Issued by: Laura McBride

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 2 of 2



Serial Number

16233

Max % error

0.50

% FS



### Issued by: QED Environmental Systems Inc.

Calibration certificate number	24RA-60425

Instrument Laser One

#### Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	3.02	3.2	3.2	3.2	3.20	0.18	0.02	0.02
1000	11	11.2	11.2	11.2	11.20	0.20	0.02	0.02
1000	102.0	105	105	105	105.00	3.00	0.30	0.30
1000	1006	1000	1000	1000	1000.00	6.00	0.60	0.60
						Uncertainty	0.60	%
						Max % error	0.60	% FS

Gas verification from 0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.18	2.10	2.10	2.10	2.10	0.08	0.08	0.08
100.00	5.00	4.80	4.80	4.80	4.80	0.20	0.20	0.20
100.00	15.10	15.00	15.00	15.00	15.00	0.10	0.10	0.10
100.00	50.00	49.80	49.80	49.80	49.80	0.20	0.20	0.20
100.00	100.00	99.50	99.50	99.50	99.50	0.50	0.50	0.50
						Uncertainty	0.50	%

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

www.qedenv.com (800) 624-2026 info@qedenv.com

QED Environmental Systems Inc. 2355 Bishop Circle West, Dexter, MI 48130







# Issued by: QED Environmental Systems Inc.

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (%F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.18	2.00	2.00	2.00	2.00	0.18	0.18	0.18
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Uncertainty	0.18	%
Max % error	0.18	% FS

www.qedenv.com (800) 624-2026 info@qedenv.com

QED Environmental Systems Inc. 2355 Bishop Circle West, Dexter, MI 48130







### Issued by: QED Environmental Systems Inc.

### Environmental conditions during calibration

Temp.	23.3	С
Pressure	982.4	mBar

#### Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
Synthetic Air	303802	3/12/2029	Synthetic Air
3 ppm	CC76924	6/7/2032	CH4
10 ppm	CC303924	11/30/2031	CH4
100ppm	DT0021612	6/6/2029	CH4
1000 ppm	CC64714	9/27/2028	CH4
1.0% Vol	DT0008070	5/24/2029	CH4
2.2% vol	CC81557	9/29/2028	CH4
5.0% vol	ττ44360	9/11/2028	CH4
15% vol	481840	6/12/2029	CH4
50% vol	CC708175	1/22/2029	CH4
100% vol	HP-T-105403	8/22/2028	CH4

Calibration results: Pass

Next scheduled calibration: 8/6/2025

Calibration date: 8/6/2024

Issued by: Sarah Schafer

Sarah Sdyp

www.qedenv.com (800) 624-2026 info@qedenv.com

QED Environmental Systems Inc. 2355 Bishop Circle West, Dexter, MI 48130



Appendix G: Gas Flare Reports



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

26.5 million m3



**CARBON ABATEMENT** 

252 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)



5.870 for the last 12 months of carbon

abatement (t CO2e)

4.2 million seedlings planted for 10 years (t CO2e)

### **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

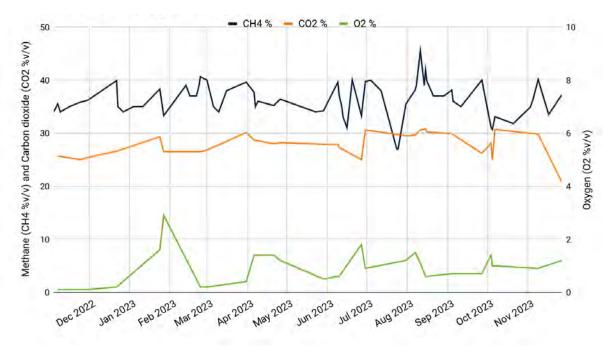
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

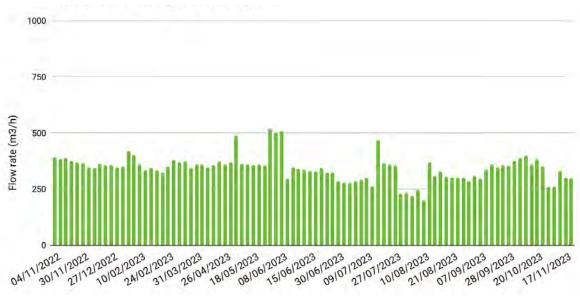


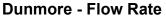
Site:	Dunmore	Report issue date:	13/12/2023
Report month:	November 2023	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• <b>December 2022</b> - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The
	new flare has improved control systems, reliability and performance, and will be compliant
	with current Type B Gas and Hazardous Area Zoning regulations.
Comments on	Availability - 94.79 %
operation /	Down Time: 37.50 h
maintenance:	
	16.08h - Planned Outage
	21.42h - Forced Outage External
	Field tuned:
	- 03/11/2023
	- 09/11/2023
	- 27/11/2023
	I GL recommends continued regular communication with Council regarding leachete
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.



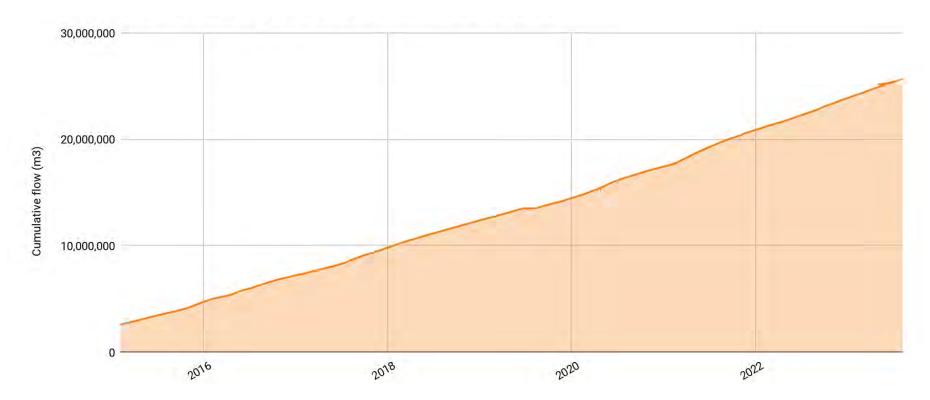

# Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
09/11/2023	40.1	29.8	0.9	257	686	26,345,690
17/11/2023	33.5	-	-	300	754	26,401,136
27/11/2023	37.2	20.8	1.2	297	774	26,471,625
Average	36.9	25.3	1.05	285	738	-




### Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.










### **Dunmore - Cumulative Flow**



26,492,740 m3 of combusted landfill gas from the beginning of the project up to 1 December 2023 represents:

- 251,617 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,193,624 seedlings planted for 10 years
- 5,870 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225



### Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

26.7 million m3



**CARBON ABATEMENT** 

253 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units

4.2 million seedlings planted for 10 years (t CO2e)



SEEDLINGS PLANTED CARS OFF THE ROAD

5.738 for the last 12 months of carbon abatement (t CO2e)

(ACCUs)

### **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

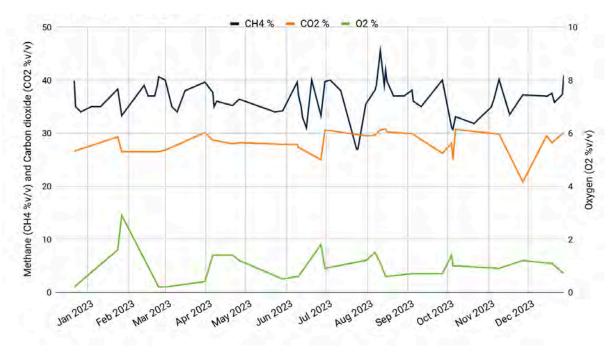
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

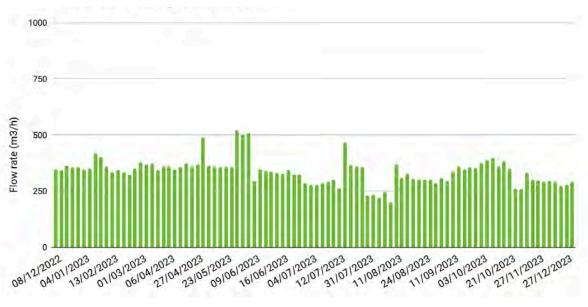


Site:	Dunmore	Report issue date:	15/01/2024
Report month:	December 2023	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

	<ul> <li>January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.</li> </ul>				
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.				
system:	June 2016 - LGI disconnected the extended gas capture system to assist Council.				
	• September 2016 - LGI disconnected the extended gas capture system to assist Council.				
	<ul> <li>November 2016 - LGI commissioned the connection to leachate sump 6 as of</li> </ul>				
	23-11-2016.				
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system				
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure				
	that had been previously disconnected, including 4 wells on the dimple and a 160mm				
	leachate riser.				
	April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.				
	• February 2021 - LGI installed 13 new vertical wells, including a new submain				
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser				
	for greater accuracy and reliability				
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for				
	intermediate capping to continue across the top of cell 3				
	• <b>December 2022</b> - LGI installed a pneumatic bore pump in a j-trap, allowing for greater				
	reliability of condensate management in the main gas line.				
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with				
	evacuated leachate being returned into sump 5.				
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with				
	evacuated leachate being returned into sump 5.				
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The				
	new flare has improved control systems, reliability and performance, and will be compliant				
	with current Type B Gas and Hazardous Area Zoning regulations.				
	Availability - 92.59 %				
	Down Time: 55.17 h				
maintenance:					
	0.83h - Planned Outage				
	54.33h - Forced Outage Internal				
	Field tuned:				
	- 28/12/2023				
Recommendations	LGI recommends continued regular communication with Council regarding leachate				
	management, site performance and future planning. Potential for re-drilling old wells.				



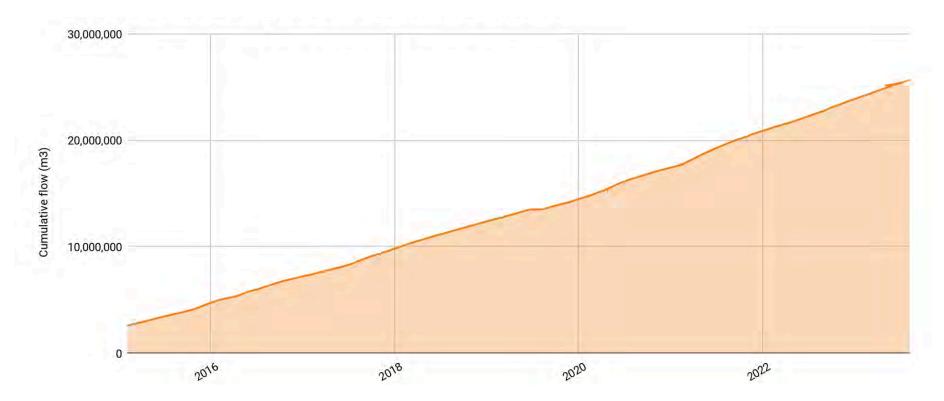

# Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
15/12/2023	36.9	29.5	1.1	294	749	26,577,789
19/12/2023	37.5	28.2	1.1	292	452	26,605,676
21/12/2023	35.8	-	-	272	440	26,619,312
28/12/2023	40.9	30.1	0.7	292	484	26,665,802
Average	37.8	29.3	0.96666666	288	531	-



### Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.






### Dunmore - Flow Rate



### **Dunmore - Cumulative Flow**



26,690,608 m3 of combusted landfill gas from the beginning of the project up to 1 January 2024 represents:

- 253,497 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,224,945 seedlings planted for 10 years
- 5,738 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

26.9 million m3



**CARBON ABATEMENT** 

255 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

4.3 million seedlings

planted for 10 years

(t CO2e)



5.628 for the last 12 months of carbon abatement (t CO2e)

(ACCUs)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

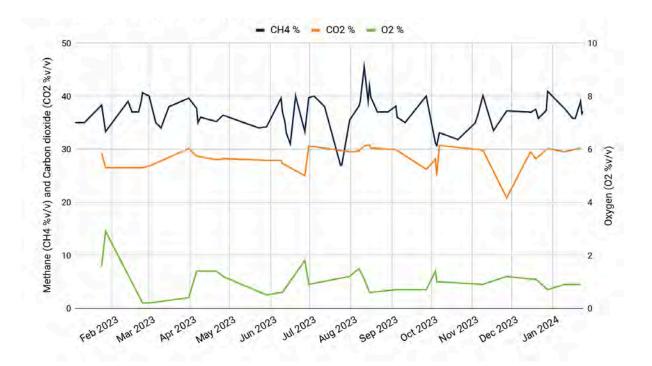
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

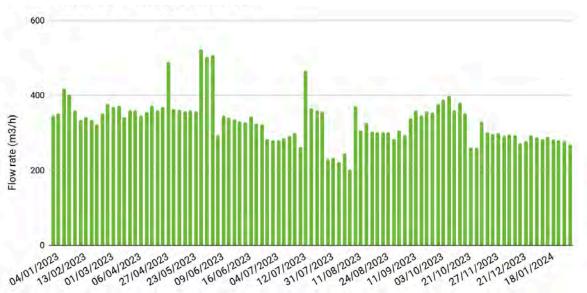


Site:	Dunmore	Report issue date:	29/02/2024
Report month:	January 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	<ul> <li>April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.</li> </ul>
system:	<ul> <li>June 2016 - LGI disconnected the extended gas capture system to assist the Council.</li> </ul>
	<ul> <li>September 2016 - LGI disconnected the extended gas capture system to assist the</li> </ul>
	Council.
	<ul> <li>November 2016 - LGI commissioned the connection to leachate sump 6 as of</li> </ul>
	23-11-2016.
	<ul> <li>May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system</li> </ul>
	<ul> <li>November 2019 - LGI on site to move mainline up battery, and reconnected</li> </ul>
	infrastructure that had been previously disconnected, including 4 wells on the dimple and a
	160mm leachate riser.
	April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The
	new flare has improved control systems, reliability and performance, and will be compliant
	with current Type B Gas and Hazardous Area Zoning regulations.
0	
	Availability - 100.00 %
•	Down Time: 0.00 h
maintenance:	
	Field tuned:
	- 18/01/2024
	- 22/01/2024
<b>Recommendations:</b>	LGI recommends continued regular communication with Council regarding leachate
	management, site performance and future planning.



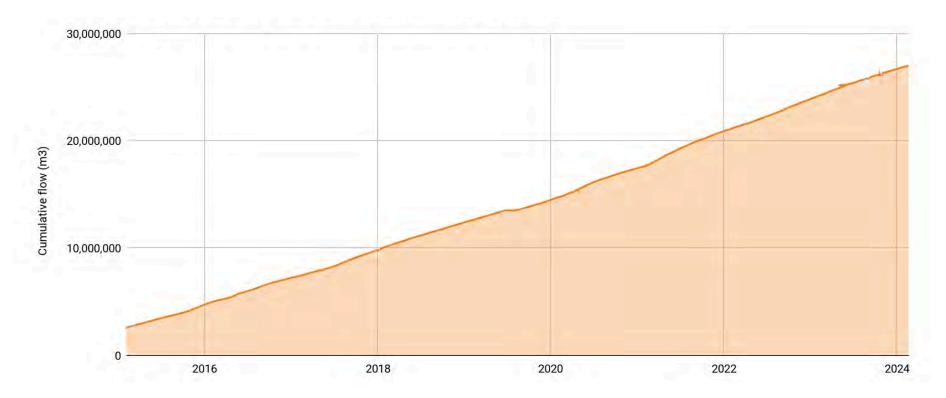

## Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
10/01/2024	37.6	29.5	0.9	287	462	26,755,289
16/01/2024	35.8	-	-	284	453	26,795,576
18/01/2024	35.8	-	-	289	459	26,809,196
22/01/2024	39	30.2	0.9	281	459	26,836,367
Average	37.1	29.9	0.9	285	458	-

## Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.








**Dunmore - Flow Rate** 



## **Dunmore - Cumulative Flow**



26,900,446 m3 of combusted landfill gas from the beginning of the project up to 1 February 2024 represents:

- 255,490 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,258,161 seedlings planted for 10 years
- 5,628 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 





BIOGAS CAPTURED

27.1 million m3

**CARBON ABATEMENT** 257 thousand tonnes



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)



SEEDLINGS PLANTED CARS OFF THE ROAD

4.3 million seedlings planted for 10 years



5.555 for the last 12 months of carbon abatement

# CO2e

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

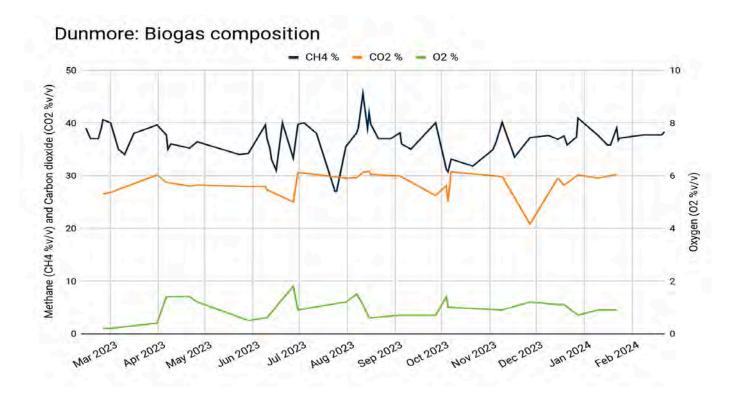
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time



Site:	Dunmore	Report issue date:	15/03/2024
Report month:	February 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

changes to existing	<ul> <li>May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.</li> </ul>
operation / maintenance:	Availability - 99.90 % Down Time: 0.67 h 0.67h - Forced Outage External
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

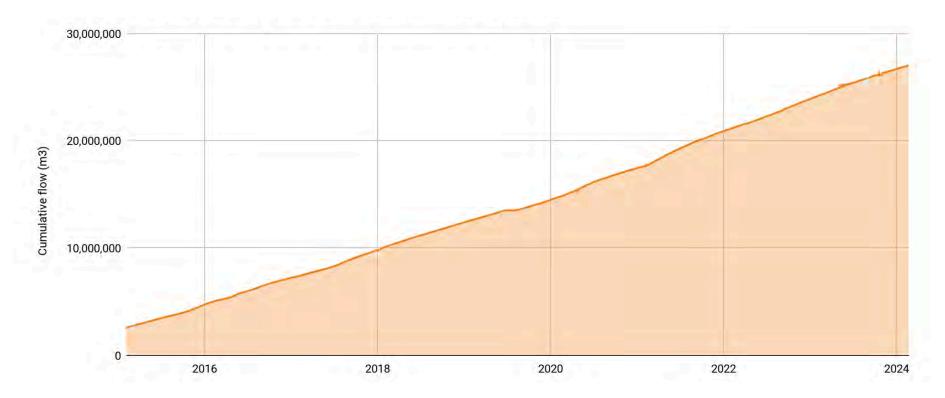

## Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
08/02/2024	37.7	-	-	271	448	26,948,083
20/02/2024	37.7	-	-	270	447	27,025,085
22/02/2024	38.3	-	-	260	440	27,037,652
27/02/2024	39.9	30.6	0.4	290	484	27,068,892
Average	38.4	30.6	0.4	273	455	-



## Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.




**Dunmore - Flow Rate** 





## **Dunmore - Cumulative Flow**



27,086,656 m3 of combusted landfill gas from the beginning of the project up to 1 March 2024 represents:

- 257,258 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,287,637 seedlings planted for 10 years
- 5,555 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
	• June 2016 - LGI disconnected the extended gas capture system to assist
System.	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• <b>December 2022</b> - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

27.5 million m3



**CARBON ABATEMENT** 

261 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units



SEEDLINGS PLANTED CARS OFF THE ROAD

5.285 for the last 12 months of carbon abatement (t CO2e)

(ACCUs)

4.4 million seedlings planted for 10 years (t CO2e)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

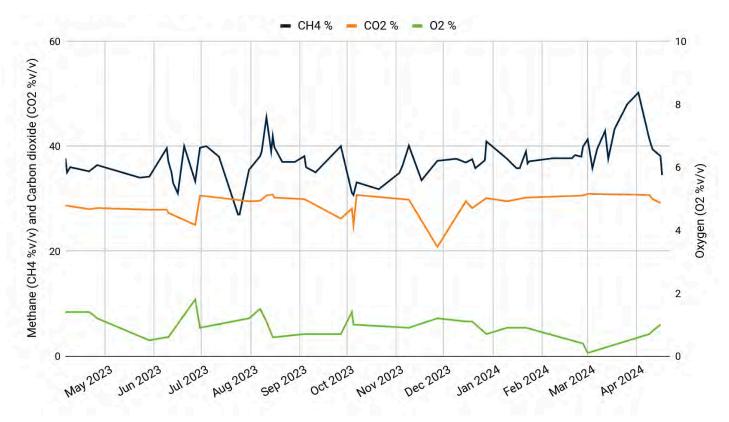
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

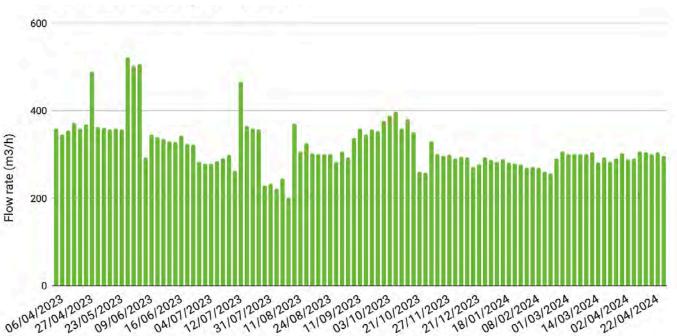
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time



Site:	Dunmore	Report issue date:	21/05/2024
Report month:	April 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

changes to existing	<ul> <li>May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.</li> </ul>
	Availability - 98.51 % Down Time: 10.75 h
	10.75h - Forced Outage Internal Field tuned: - 29/04/2024
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.


## Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
02/04/2024	50.2	-	-	302	507	27,276,513
09/04/2024	41.3	30.7	0.7	288	458	27,324,829
11/04/2024	39.4	29.9	0.8	290	450	27,338,790
16/04/2024	38.1	29.2	1	307	578	27,374,684
Average	42.25	29.93	0.83	297	498	-

## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen






**Dunmore - Flow Rate** 

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225



## **Dunmore - Cumulative Flow**



27,480,639 m3 of combusted landfill gas from the beginning of the project up to 1 May 2024 represents:

- 261,000 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,350,002 seedlings planted for 10 years
- 5,285 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Commonto on	a lanuary 2016 I.C. disconnected the 4 lateral wells and 8 vertical wells
	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

27.7 million m3



**CARBON ABATEMENT** 

263 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

5.155 for the last 12 months of carbon abatement (t CO2e)

4.4 million seedlings planted for 10 years (t CO2e)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

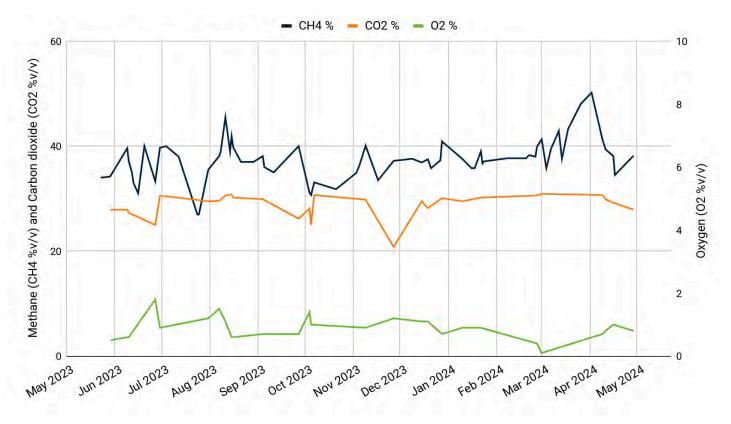
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

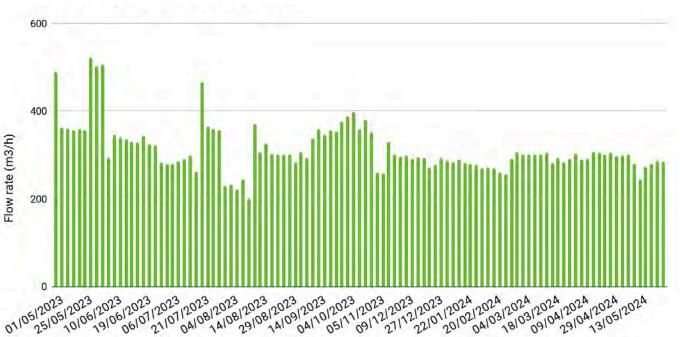
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time



Site:	Dunmore	Report issue date:	14/06/2024
Report month:	May 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

changes to existing	<ul> <li>May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.</li> </ul>
	Availability - 99.81 % Down Time: 1.42 h 1.42h - Planned Outage Field tuned: - 31/05/2024
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.


## Flare Operational Data:

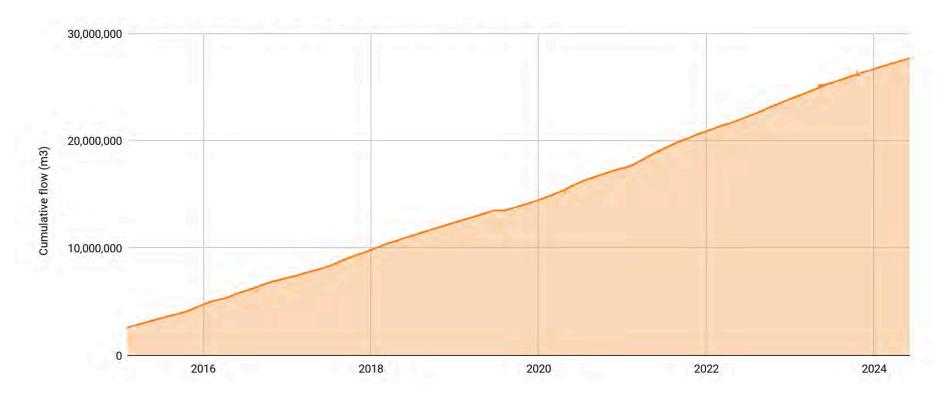

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
03/05/2024	-	-	-	299.14	537	27,497,311
07/05/2024	-	-	-	301	209	27,525,925
16/05/2024	-	-	-	273	535	27,582,754
31/05/2024	42.2	30.4	0.7	285	560	27,685,920
Average	42.20	30.40	0.70	290	460	-

## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen






**Dunmore - Flow Rate** 

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225



## **Dunmore - Cumulative Flow**



27,689,259 m3 of combusted landfill gas from the beginning of the project up to 1 June 2024 represents:

- 262,982 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,383,025 seedlings planted for 10 years
- 5,155 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Commonto on	a lanuary 2016 I.C. disconnected the 4 lateral wells and 8 vertical wells
	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

27.9 million m3



**CARBON ABATEMENT** 

265 thousand tonnes (t CO2e - environmental benefit)

**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

5.118 for the last 12 months of carbon abatement (t CO2e)

4.4 million seedlings planted for 10 years (t CO2e)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

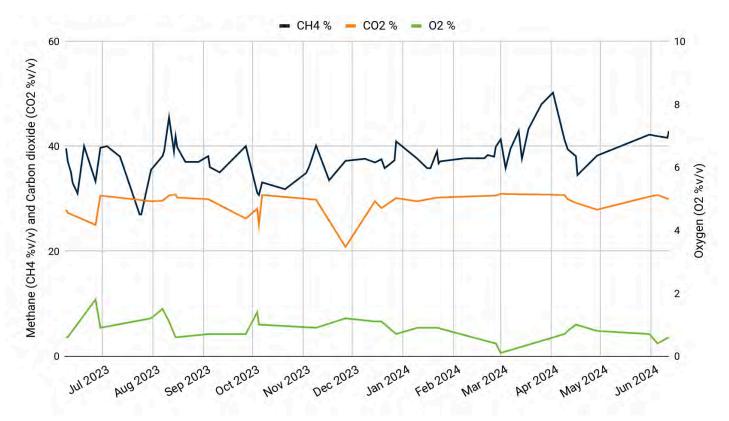
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

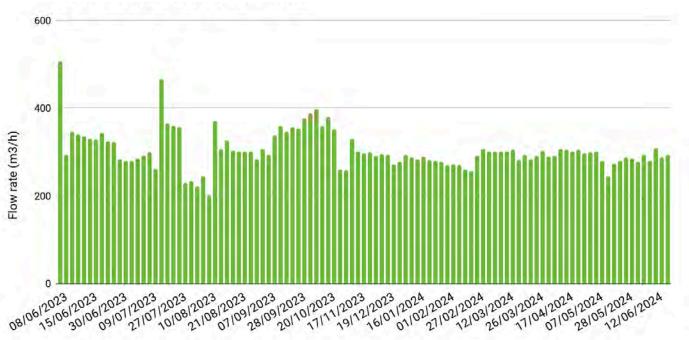


Site:	Dunmore	Report issue date:	23/07/2024
Report month:	June 2024	Prepared by:	Nusrat Habib
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

changes to existing	<ul> <li>May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.</li> </ul>
operation /	Availability - 99.70 % Down Time: 2.17 h
maintenance:	2.17h - Planned Outage
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

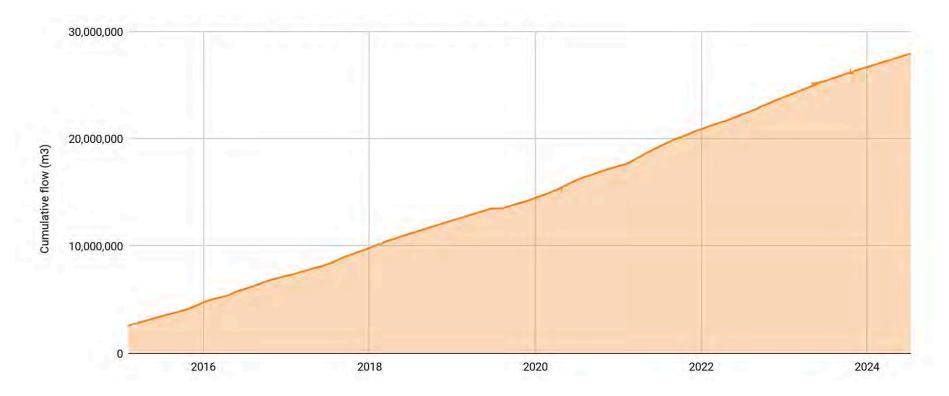

## Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
05/06/2024	41.9	30.7	0.4	292	546	27,718,675
12/06/2024	42.9	29.9	0.6	309	580	27,765,593
25/06/2024	39.6	-	-	287	534	27,855,001
28/06/2024	39.8	28.6	1	293	542	27,876,987
Average	41.05	29.73	0.67	295	551	-


## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen










## **Dunmore - Cumulative Flow**



27,894,757 m3 of combusted landfill gas from the beginning of the project up to 1 July 2024 represents:

- 264,933 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,415,554 seedlings planted for 10 years
- 5,118 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Commonto on	a lanuary 2016 I.C. disconnected the 4 lateral wells and 8 vertical wells
	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

28.1 million m3



**CARBON ABATEMENT** 

267 thousand tonnes (t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)

4.4 million seedlings planted for 10 years (t CO2e)



SEEDLINGS PLANTED CARS OFF THE ROAD

5.054 for the last 12 months of carbon abatement (t CO2e)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

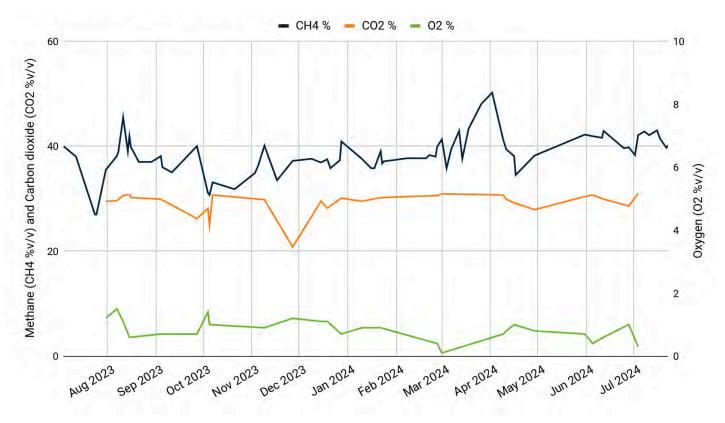
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

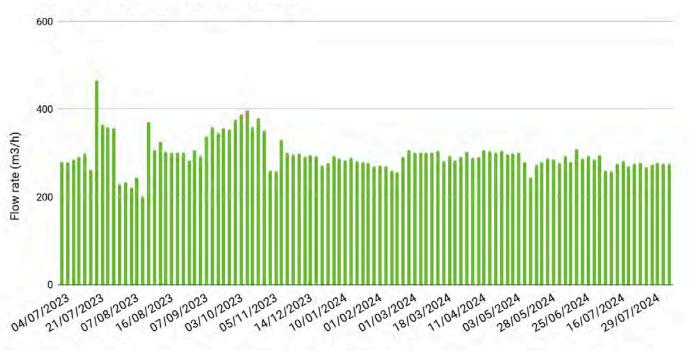


Site:	Dunmore	Report issue date:	15/08/2024
Report month:	July 2024	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater reliability of
-	condensate management in the main gas line.
-	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated
system:	leachate being returned into sump 5.
	• June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated
	<ul> <li>leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare</li> </ul>
	has improved control systems, reliabilty and performance, and will be compliant with current Type B
	Gas and Hazardous Area Zoning regulations.
Comments on	Availability - 99.79 %
operation /	Down Time: 1.58 h
maintenance:	1.58h - Planned Outage
	Field tuned: - 04/07/2024
	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

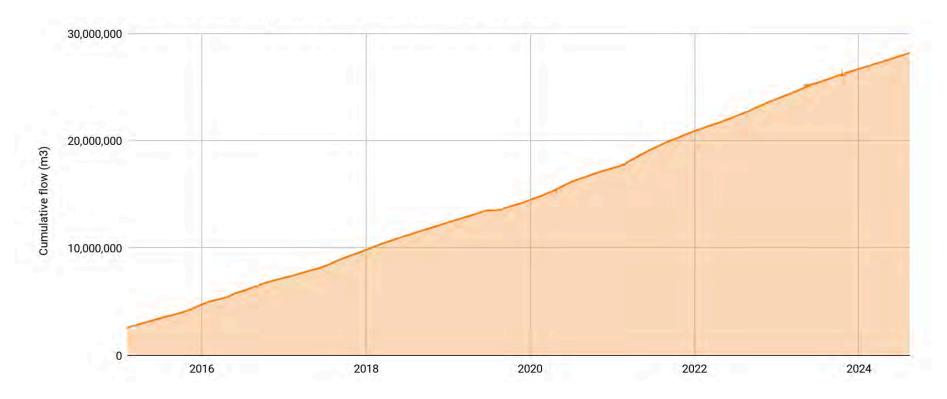

## Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
04/07/2024	42.1	31	0.3	295	555	27,917,600
16/07/2024	43	-	-	276	577	27,993,997
25/07/2024	40.4	-	-	278	693	28,051,983
31/07/2024	38.2	-	-	275	716	28,104,624
Average	40.93	31.00	0.30	281	635	-


## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen




**Dunmore - Flow Rate** 





## **Dunmore - Cumulative Flow**



28,097,024 m3 of combusted landfill gas from the beginning of the project up to 1 August 2024 represents:

- 266,854 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,447,572 seedlings planted for 10 years
- 5,054 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Commonto on	a lanuary 2016 I.C. disconnected the 4 lateral wells and 8 vertical wells
	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

28.3 million m3



**CARBON ABATEMENT** 

269 thousand tonnes (t CO2e - environmental benefit)

**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

(t CO2e)

4.5 million seedlings planted for 10 years

5.044 for the last 12 months of carbon abatement (t CO2e)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

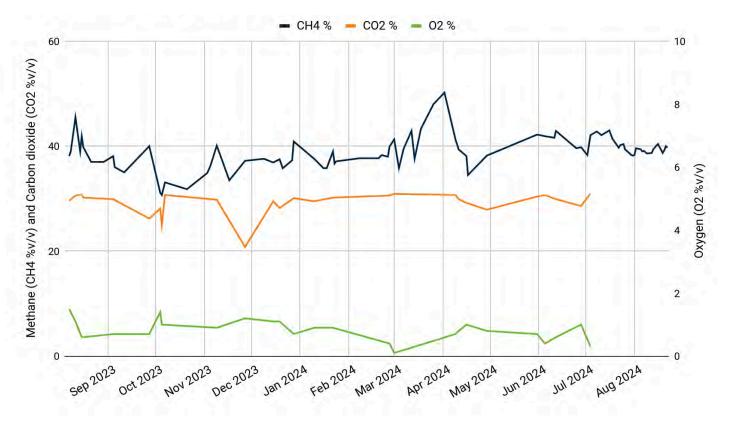
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

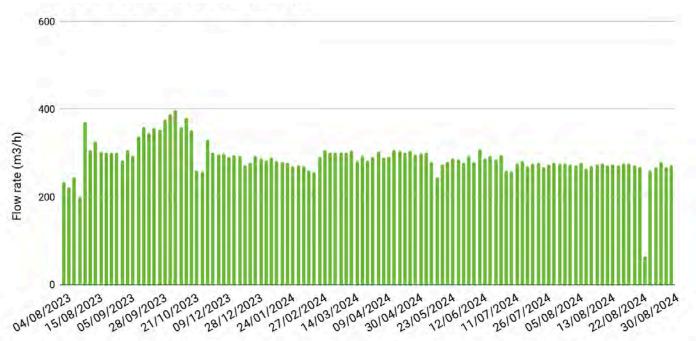


Site:	Dunmore	Report issue date:	13/09/2024
Report month:	August 2024	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

0	New 2002 I Ol installed a series of 2 measured is here surges at various wells with suscepted
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated
-	leachate being returned into sump 5.
existing	June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated
system:	leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.
Comments on	Availability - 100.00 %
operation /	Down Time: 0.00 h
maintenance:	
	Field tuned: - 12/08/2024
	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

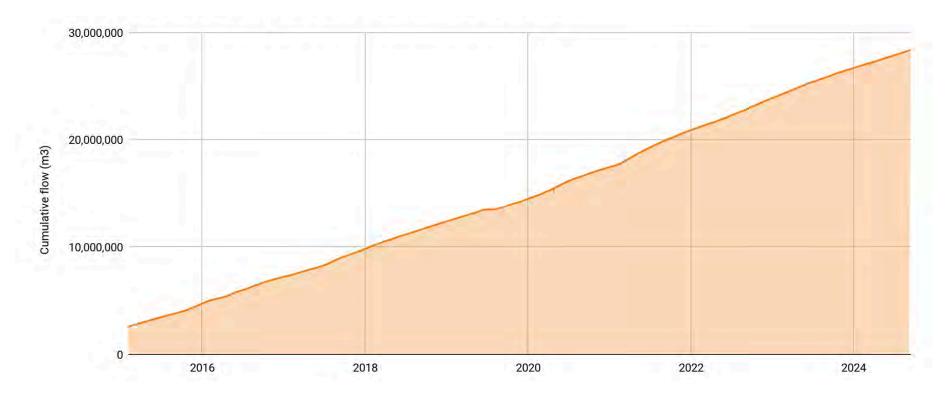

## Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
02/08/2024	39.6	-	-	273	767	28,107,289
09/08/2024	38.6	-	-	274	789	28,152,615
16/08/2024	40.4	-	-	271	806	28,197,597
27/08/2024	39.7	-	-	267	777	28,268,861
Average	39.58	-	-	271	785	-


## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen




**Dunmore - Flow Rate** 





## **Dunmore - Cumulative Flow**



28,299,499 m3 of combusted landfill gas from the beginning of the project up to 1 September 2024 represents:

- 268,777 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,479,622 seedlings planted for 10 years
- 5,044 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
	• June 2016 - LGI disconnected the extended gas capture system to assist the
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	the Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	<ul> <li>April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.</li> </ul>
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.



# LCI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU



# **PROJECT PROFILE: DUNMORE, NSW**

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced*** 



**BIOGAS CAPTURED** 

28.5 million m3



**CARBON ABATEMENT** 271 thousand tonnes

(t CO2e - environmental benefit)



**ACCUs CREATED** 

92 thousand Australian Carbon Credit Units

4.5 million seedlings planted for 10 years

(t CO2e)



SEEDLINGS PLANTED CARS OFF THE ROAD

4.948 for the last 12 months of carbon abatement (t CO2e)

(ACCUs)

## **BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL**

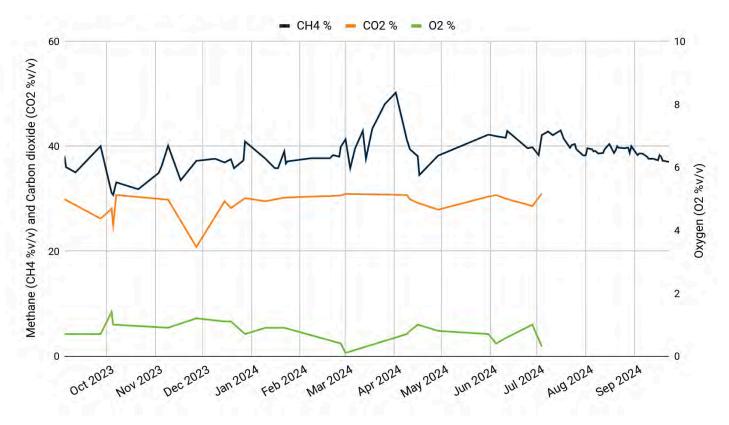
- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas • flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

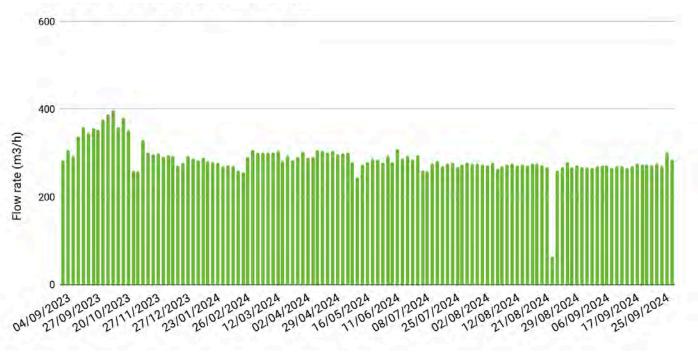


Site:	Dunmore	Report issue date:	14/10/2024
Report month:	September 2024	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

changes to existing	<ul> <li>May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with evacuated leachate being returned into sump 5.</li> <li>October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations.</li> <li>October 2024 - LGI Repaired a submain that was damaged in day to day operations. LGI conducting repair works on the flare (asset team for further information).</li> </ul>
	Availability - 96.30 % Down Time: 26.67 h 26.67h - Forced Outage External Field tuned: - 13/09/2024
	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.

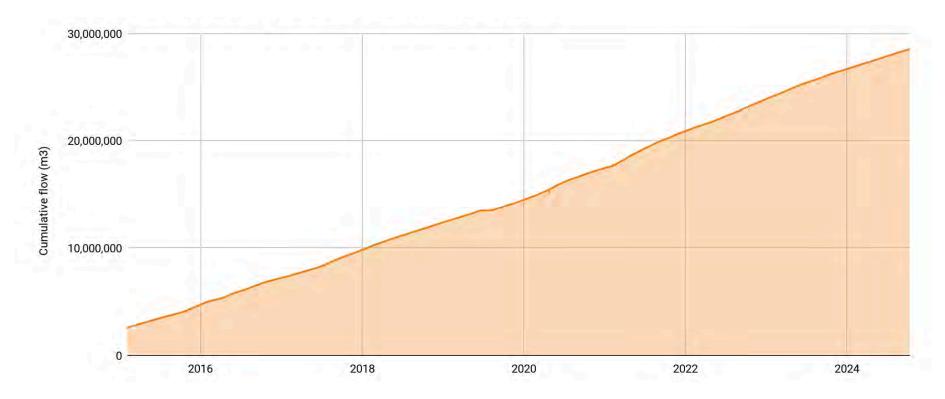

## Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³ )
02/09/2024	38.7	-	-	268	782	28,308,010
09/09/2024	38	-	-	271	783	28,353,918
16/09/2024	37.3	-	-	266	740	28,399,232
27/09/2024	38	-	-	301	674	28,463,907
Average	38.00	-	-	277	745	-


## **BIOGAS MONTHLY REPORT - DUNMORE**



## Dunmore- Methane, Carbon Dioxide & Oxygen




**Dunmore - Flow Rate** 





## **Dunmore - Cumulative Flow**



28,490,464 m3 of combusted landfill gas from the beginning of the project up to 1 October 2024 represents:

- 270,591 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,509,851 seedlings planted for 10 years
- 4,948 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.



This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

## Archived commentary:

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
	• June 2016 - LGI disconnected the extended gas capture system to assist the
	Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist
	the Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
	system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the
	dimple and a 160mm leachate riser.
	<ul> <li>April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.</li> </ul>
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
	analyser for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
	allow for intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
	greater reliability of condensate management in the main gas line.